График
| Дата |
Мероприятие |
|
01.02 |
Заезд |
|
02.02 - 04.02 |
Рабочие дни (лекции, семинары, выступление с докладами) |
|
05.02 |
Выходной (культурная программа) |
|
06.02 - 08.02 |
Рабочие дни (лекции, семинары, выступление с докладами) |
| 09.02 | Отъезд |
Курсы и темы докладов:
Куратор: Дмитрий Левков
Кураторы: Егор Зенкевич, Сергей Миронов,
3) Калибровочные поля и супергеометрия
Куратор: Максим Григорьев
4) Конформные симметрии в теории поля
Куратор: Константин Алкалаев
Доклады студентов:
| ФИО студента | ВУЗ | Название доклада |
| Агафонов Григорий Алексеевич | Московский государственный университет имени М.В.Ломоносова, Физический факультет, Кафедра физики частиц и космологии, Москва, Россия | BRST комплекс |
| Анохин Андрей Владимирович | Московский физико-технический институт, Москва, Россия |
Интегрируемость, Уравнение КдФ, Симметрии, Лаксова форма. Бесконечное число коммутирующих симметрий, тау-функция для иерархий КдФ и КП |
| Адлер Сергей Всеволодович | Московский государственный университет имени М.В.Ломоносова, Физический факультет, Кафедра квантовой теории и физики высоких энергий, Москва, Россия | Конформная симметрия в двух измерениях. Алгебра Витта и ее центральное расширение алгебра Вирасоро. Элементы теории представлений алгебры Вирасоро |
| Бычков Алексей Станиславович | Московский физико-технический институт, Москва, Россия | Геометрия Картана и гравитация |
| Горев Никита Дмитриевич | Национальный исследовательский Томский государственный университет, Физический факультет, Томск, Россия | Задачи по супергеометрии |
| Голубь Никита Игоревич | Санкт-Петербургский государственный университет, Физический факультет, Санкт-Петербург, Россия | Геометрия Картана и гравитация |
| Гудько Александр Сергеевич | Новосибирский государственный университет, Физический факультет, Новосибирск, Россия | Уравнение Кортевега–де Фриза: симметрии, Лаксова форма, солитоны |
| Еловенкова Мария Артуровна | Московский физико-технический институт, Москва, Россия | Расслоения и связности |
| Елфимов Борис Максимович | Национальный исследовательский Томский государственный университет, Физический факультет, Томск, Россия | Задачи по супергеометрии |
| Марков Михаил Викторович | Санкт-Петербургский государственный университет, Физический факультет, Санкт-Петербург, Россия | Геодезические. Связь сохраняющихся величин с векторами Киллинга. Сохраняющиеся величины и геодезические в метрике Шварцшильда. Круговые орбиты. Вычисление собственного времени падающего наблюдателя до пересечения горизонта событий. Тесты ОТО |
| Замирайло Дарья Александровна | Московский физико-технический институт, Москва, Россия | Псвдодифференциальные операторы, иерархия КдФ, КП |
| Григорьев Андрей Алексеевич | Московский физико-технический институт, Москва, Россия | Q-многообразия. Алгеброиды Ли |
| Смирнов Павел Юрьевич | Московский физико-технический институт, Москва, Россия | Конформная изометрия многомерных пространств. Конус Дирака, метод объемлющего пространства. Пространство AdS и конформная граница. |
| Тарусов Александр Андреевич | Московский физико-технический институт, Москва, Россия | Примарные и вторичные поля на пространстве Минковского, теория представлений конформной алгебры. Модули Верма алгебры sl(2) как пример конформного поля |
| Точеных Ксения Алексеевна | Санкт-Петербургский государственный университет, Физический факультет, Санкт-Петербург, Россия | Ограничения, накладываемые конформной инвариантностью на 2,3,4-х точечные корреляторы в конформной теории поля |
| Куляшов Олег Николаевич | Московский физико-технический институт, Москва, Россия |
Псевдодифференциальные операторы, иерархия КдФ, КП Уравнения Хироты. Многосолитонные решения уравнения КдФ |
| Мужичков Никита Борисович | Национальный исследовательский ядерный университет «МИФИ», Факультет экспериментальной и теоретической физики, Москва, Россия | Конформная изометрия многомерных пространств |
|
Ризванов Эмиль Ильдарович и Рудинский Дмитрий Александрович |
Национальный исследовательский ядерный университет «МИФИ», Факультет экспериментальной и теоретической физики, Москва, Россия | Пример CFT: теория свободного скалярного безмассового поля. Вычисление 2-точечного коррелятора скалярных полей. Построение пространства квантовых состояний как представления конформной алгебры. Теория струн как |
| Зайцева Таисия Игоревна | Санкт-Петербургский государственный университет, Физический факультет, Санкт-Петербург, Россия | Симметрии искривленного пространства-времени |
| Кочнев Герман Евгеньевич | Санкт-Петербургский государственный университет, Физический факультет, Санкт-Петербург, Россия | Конформная симметрия в двух измерениях. Алгебра Витта и ее центральное расширение алгебра Вирасоро. Элементы теории представлений алгебры Вирасоро |
| Кривороль Вячеслав Александрович | Санкт-Петербургский государственный университет, Физический факультет, Санкт-Петербург, Россия | CFT корреляционные функции. Вычисление 2-точечного, 3-точечного и 4-точечного коррелятора. Корреляторы в объемлющем пространстве |
| Клыков Андрей Алексеевич | Московский физико-технический институт, Москва, Россия | Связность Берри |
| Мандрыгин Семён Иванович | Московский государственный университет имени М.В.Ломоносова, Физический факультет, Кафедра физики частиц и космологии, Москва, Россия | Причинная структура черных дыр |
| Шамарина Екатерина Эдуардовна | Московский государственный университет имени М.В.Ломоносова, Физический факультет, Кафедра теоретической физики, Москва, Россия | Симметрии искривленного пространства-времени |
| Пирогов Михаил Александрович | Санкт-Петербургский государственный университет, Математико-механический факультет, Санкт-Петербург, Россия | Расслоения и связности |
| Путилин Михаил Сергеевич | Московский государственный университет имени М.В.Ломоносова, Физический факультет, Кафедра теоретической физики, Москва, Россия | Уравнение КдФ и его симметрии |
| Пушкарев Василий Владимирович | Московский государственный университет имени М.В.Ломоносова, Физический факультет, Москва, Россия | Примарные и вторичные поля на пространстве Минковского, теория представлений конформной алгебры. Модули Верма алгебры sl(2) как пример конформного поля |
| Ушаков Кирилл Александрович | Московский физико-технический институт, Москва, Россия | BRST комплекс калибровочной теории. Продольный диффернциал. Дифференциал Кошуля |
| Чеховской Сергей Дмитриевич | Санкт-Петербургский государственный университет, Физический факультет, Санкт-Петербург, Россия | Термодинамика чёрных дыр |
