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Can gravity be formulated as a UV complete  

Quantum Field Theory ? 

(unitary, finite number of d.o.f., under control, ...)



General Relativity
Beautiful local gauge theory based on diff-invariance

Classical: describes phenomena from                to  

                fails in black hole / cosmological singularities 

10�2cm 1028cm

Quantum: an effective theory valid up to

                 requires UV completion at energies higher than 

MP � 2� 1019GeV
MP
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Why GR is not UV complete ?

hµ� �� b(d�1)/2hµ�

quadratic action 

sets the amplitude 

of fluctuations

xµ �� b�1xµ

Sint �� b(d�1)/2Sint

For            the interaction strength grows unboundedly at short 
distances (              )

Generation of higher-order operators            loss of predictive power

b��

interaction terms

{ {
Zoom in on shorter scales:

To preserve the quadratic action scale the metric:

scaling dimension
Look at the interactions:

d > 1

SEH =
M2

P

2

�
dd+1x

�
gR

M2
P
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�
dd+1x

�
hij�hij + h2�h + . . .

�



Why GR is not UV complete ?

hµ� �� b(d�1)/2hµ�

quadratic action 

sets the amplitude 

of fluctuations

xµ �� b�1xµ

Sint �� b(d�1)/2Sint

For            the interaction strength grows unboundedly at short 
distances (              )

Generation of higher-order operators            loss of predictive power

b��

interaction terms

{ {
Zoom in on shorter scales:

To preserve the quadratic action scale the metric:

scaling dimension
Look at the interactions:

d > 1

SEH =
M2

P

2

�
dd+1x

�
gR

M2
P

2

�
dd+1x

�
hij�hij + h2�h + . . .

�



Why GR is not UV complete ?

hµ� �� b(d�1)/2hµ�

quadratic action 

sets the amplitude 

of fluctuations

xµ �� b�1xµ

Sint �� b(d�1)/2Sint

For            the interaction strength grows unboundedly at short 
distances (              )

Generation of higher-order operators            loss of predictive power

b��

interaction terms

{ {
Zoom in on shorter scales:

To preserve the quadratic action scale the metric:

scaling dimension
Look at the interactions:

d > 1

SEH =
M2

P

2

�
dd+1x

�
gR

M2
P

2

�
dd+1x

�
hij�hij + h2�h + . . .

�



Why GR is not UV complete ?

hµ� �� b(d�1)/2hµ�

quadratic action 

sets the amplitude 

of fluctuations

xµ �� b�1xµ

Sint �� b(d�1)/2Sint

For            the interaction strength grows unboundedly at short 
distances (              )

Generation of higher-order operators            loss of predictive power

b��

interaction terms

{ {
Zoom in on shorter scales:

To preserve the quadratic action scale the metric:

scaling dimension
Look at the interactions:

d > 1

SEH =
M2

P

2

�
dd+1x

�
gR

M2
P

2

�
dd+1x

�
hij�hij + h2�h + . . .

�



Why GR is not UV complete ?

hµ� �� b(d�1)/2hµ�

quadratic action 

sets the amplitude 

of fluctuations

xµ �� b�1xµ

Sint �� b(d�1)/2Sint

For            the interaction strength grows unboundedly at short 
distances (              )

Generation of higher-order operators            loss of predictive power

b��

interaction terms

{ {
Zoom in on shorter scales:

To preserve the quadratic action scale the metric:

scaling dimension
Look at the interactions:

d > 1

SEH =
M2

P

2

�
dd+1x

�
gR

M2
P

2

�
dd+1x

�
hij�hij + h2�h + . . .

�



Stelle (1977)
A failed attempt

Interactions contain arbitrarily high powers of the metric

Different from Yang-Mills theory, similar to sigma models

If we want to bound the interactions in UV we need to 
reduce the scaling dimension of        to zerohij

�
d4x

�
M2

P hij�hij + hij�2hij + . . .
�

�
d4x
�

g
�
M2

P R + Rµ�Rµ� + R2
�

dominates at high energies, 
determines the scaling dim 

of the metric in UV{

Fast decrease of the graviton propagator                        improves 
convergence of the loop integrals. The theory is renormalizable 
and asymptotically free ! Fradkin, Tseytlin (1981) 

Avramidi, Barvinsky (1985)

But higher time derivatives give ghost poles        

          no unitary interpretation

�h h� � 1/k4

�h h� � 1
k2
� 1

k2 + M2
P
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Horava (2009)
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x

Imagine that spacetime is endowed with a 
preferred spacelike foliation 

General covariance is reduced to foliation-
preserving diffeomorphisms
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Field content and low-E limit
We want to preserve as many symmetries, as possible

foliation-preserving

diffeos

xi �� x̃i(x, t)

t �� t̃(t)

�ij , N i

N

{

Kij =
�̇ij ��iNj ��jNi

2N

contains terms 
with up to 2d 
spatial derivatives

dim�ij = dimN = 0

dimN i = d� 1

Reduces to a scalar-tensor gravity at low energies

L = M2
P
�

gR + L�[gµ� ,�]

L = M2
P
�

�N(KijK
ij � �K2 � V[�ij , N ])
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What about renormalizability  
or why power-counting is not enough ?

A naive “proof”:

Z =
�

[dh]e�S

=
� (�1)n

n!

�
[dh]e�S0

�
dx1 . . . dxnLint(x1) . . .Lint(xn)}

dim � 0
Divergences are local and are removed by local counterterms 

of                    that are already present in the actiondim � 2d
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of                    that are already present in the actiondim � 2d

this is not guaranteed because of gauge invariance



Toy model: d=2 “projectable”

• is fully parameterized by 3 couplings

“projectability condition” N = N(t) set             by gauge-fixing 
time and forget

N = 1

L =
1

2G

�
KijK

ij � �K2 � µR2
sp

�

� < 1/2 � > 1G, µ > 0

• unlike GR in 3d, has propagating d.o.f., a single scalar

• is well-behaved for                 and                or   

dimN i = 2dim�ij = 0



Lgf =
�

2G
F iOijF

j

We need to fix spatial diffeos linear combination 
of the fields  

invertible operator 

Gauge fixing

must have dim=4 to 
preserve power-counting

F i = N i

F i = �jhij + ���ih

�N iN j� � �ij
G

k2

no dependence on 
energy

�N i(t, x)N j(0)� � �ij

4�
�(t) log |x| the singularity is non-local (in space) 

Hard to keep track of divergences

Similar to the Coulomb gauge in YM. What is the analog of 
covariant gauges ?

Local Oij
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Regular propagators

[�1] = r1 , [�2] = r2 under Lifshitz scaling with z = d

��1�2� =
� P (�, k)

D(�, k)

D =
M�

m=1

�
Am�2 + Bmk2d + . . .

�
, Am, Bm > 0

P polynomial of degree                                         (to ensure the 
correct scaling at short distances)

r1 + r2 + 2(M � 1)d
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Regular propagators

[�1] = r1 , [�2] = r2 under Lifshitz scaling with z = d

��1�2� =
� P (�, k)

D(�, k)

D =
M�

m=1

�
Am�2 + Bmk2d + . . .

�
, Am, Bm > 0

P polynomial of degree                                         (to ensure the 
correct scaling at short distances)

r1 + r2 + 2(M � 1)d

Regular propagators have local singularities in position space



Regular gauges

We have to allow for non-local gf. Lagrangian. Good choice:

F i = Ṅ i +
1
2�
O�1

ij �khjk �
�

2�
O�1

ij �jh

Oij = �
�
�ij� + ��i�j

��1

• disentangle         from        in the quadratic action

• regular propagators for all fields (including Faddeev-Popov ghosts)

• two free gf. parameters 

• straightforward generalization to            , e.g.d > 2

Od=3
ij = ��1

�
�ij� + ��i�j

��1

hij N i

�, �
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1
2�
O�1

ij �khjk �
�

2�
O�1

ij �jh

Oij = �
�
�ij� + ��i�j

��1

• disentangle         from        in the quadratic action

• regular propagators for all fields (including Faddeev-Popov ghosts)

• two free gf. parameters 

• straightforward generalization to            , e.g.d > 2

Od=3
ij = ��1

�
�ij� + ��i�j

��1

hij N i

�, �



Regular gauges

We have to allow for non-local gf. Lagrangian. Good choice:

F i = Ṅ i +
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Diagrammatics in brief

• subdivergences are cancelled by counterterms introduced at 
the previous steps Anselmi, Halat (2007)

• induction in the number of loops

• introduce the degree of divergence       defined as the scaling 
of the diagram under stretching the loop momenta and 
frequencies                             , 

D

�loop �� bd �loopkloop �� b kloop

• if all propagators are regular, diagrams with             convergeD < 0

• diags. with              require local counterterms of scaling 
dimension at most 

D > 0
2d
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Comments

• Does not work for non-projectable: additional variable N = 1 + �

present even in       - gauges

physical: shows up in the interaction of local sources

��

���� = regular +
1

k2d

• Straightforward generalization to projectable HL gravity in any 
dimensions

Cancellation of non-local divergence due to 

time-reparameterization ???



Gauge invariance ?
GI is explicitly broken by the gauge-fixing. Instead, we have to rely 
on the BRST symmetry (Slavnov-Taylor identities)              

To restore original BRST, the gauge fields must be redefined at 
every loop order.    

                              the redefinition can be non-linear (unlike YM)

Non-linearity of BRST            deformation by quantum 
corrections. To restore original BRST, the gauge fields must be 
redefined at every loop order  

dimhij = 0

Beyond PC: relies on relativistic invariance and the explicit 
structure of the gauge group            Barnich, Brandt, Henneaux (1994)

Textbook YM treatment: relies on explicit power counting 
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Everything from scratch !



Renormalization in the background-field method

�ij = �̄ij + hij N i = N̄ i + ni,
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• BRST transformations acting on fluctuations 

• Backgroung GI acting on both. Acts linearly !         

one-loop counterterms are manifestly gauge-invariant
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quantum fields from renormalization of couplings

General result: BRST structure is preserved in any non-
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• theories with U(1) subgroups
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• fix the background gauge

3 gauge choices: 2 regular + conformal hij = �̄ije

2�

• expand background:  �̄ij = �ij + Hij

• extract divergent parts of coefficients in front of   

ḢijḢij (�i�jHij)2(Ḣii)2,                  ,

G � µ

H Hh, n, c H H

h, n,
c

d�

d log �
=

15� 14�

64�

�
1� 2�

1� �
G dG

d log �
= � (16� 33� + 18�2)

64�(1� �)2

�
1� �

1� 2�
G2

Sit down and calculate

• integrate out fluctuations
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Smth interesting is going on here 
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(c) P1 = Pt, P2 = Ps

� =
1

2⌫5
, ⇠ =

⌫s

2⌫5(1� �)
� 1 . (62)

(d) P1 = Ps, P2 = Pt

� =
1

2⌫s
, ⇠ =

⌫5

2⌫s(1� �)
� 1 , (63)

The corresponding simplified propagators can be read from (IIIA) and are also collected in the

Appendix, together with the value of the UV divergences as computed in every of the gauges.

Using this four choices, we can perform the computation of the logarithmic divergences in a pretty

e�cient way. Using a MS substraction scheme we thus end up with the following counterterms

for the operators in (23)

�L =
⇣
C1PiNjP

i
N

j + C2(PiNi)
2
⌘Z

ds

s

. (64)

where the value of C1 and C2 will depend on the gauge choice and are collected in the Appendix.

We now regulate the UV divergence as described in (59) and define the �-functions in the Wilsonian

way as the sensitivity of our theory to the reference scale k⇤. We thus have

�G ⌘ dG

d log k⇤
= 24G2

C1 , (65)

�� ⌘ d�

d log k⇤
= 12G

�
C2 � (1� 2�)C1

�
. (66)

The running of G is gauge dependent, which is not surprising as it is not defined on-shell5.

MH:How far shall we enter into this discussion at this level?? On the other hand,

the �-function for � should be gauge invariant. Indeed, in all four gauges that we studied we

obtain the same expression,

�� =
27(1� �)2 + 3

p
↵(11� 3�)(1� �)� 2↵(1� 3�)2

120⇡2(1 +
p
↵)

p
↵(1� �)

Gp
⌫5

. (67)

where ↵ = ⌫s
⌫5
. MH:I had to change it to ↵ because I couldn’t find a way to use the same

font for a in Mathematica

Let us discuss this result. The contribution of G/

p
⌫5 factors out and the whole �-function can

be thought as a function of ↵ and lambda. MH:I have commented the discussion where we

introduce b. I think it is not necessary but it is still in the file if we wish to add it.

The value of the �-function can be split in several regions, which are shown in figure 3. They

correspond to:

5 Instead, the essential coupling can be chosen in the form G/
p
⌫5.
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FIG. 3. The sign of the �-function for the coupling � in di↵erent regions of parameter (�,↵).

The �-function vanishes on the lines separating positive and negative regions. The line at � > 1

(1/3 < �) is UV attractive (repulsive) along the �-direction. These lines correspond to potential

location of fixed points of the full RG flow. The region � 2 [1/3, 1] is excluded by the requirement

of unitarity.

constitutes a potential location of the fixed points of the full RG flow. The contribution of

G/

p
⌫

5

factors out, so that the sign of �� and the location of its zeros are determined only by

two parameters � and ↵. We have the following regions in the plane of these parameters10,

see Fig. 3:

• � < 1/3 , ↵  9/4

In this region �� is always positive. So it does not contain any fixed points.

• � < 1/3 , ↵ > 9/4

�� is positive at � > �↵ and negative at � < �↵, where

�↵ =
9 + 7

p
↵� 2↵ + 2

p
10(↵ + ↵

3/2)

3(3 +
p
↵� 2↵)

. (47)

The �-function vanishes on the line (�↵,↵) which is IR attractive along the �-direction.

10 Recall that the interval 1/3  �  1 is excluded as it corresponds to negative kinetic term of the scalar

mode and hence the loss of unitarity.
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NB. Non-trivial: AF could 
have failed 
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Horava-Lifshitz gravity: Theory summary

• Projectable models represent a class of renormalizable 

gravity theories

no local gauge-invariant

observables, spin-2 d.o.f. 

• In (2+1)d asymptotically free (UV complete); possibly also in (3+1)

• In IR goes into strong coupling — What is it ? (gravitational 
confinement ?? non-trivial fixed point ???) 

• No definitive answer abour renormalizability of the non-
projectable version
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• Phenomenology of non-projectable HL gravity can be close to GR

• Lorentz invariance is fundamentally broken. Can it emerge as 
low-energy property ?

Quite common in non-gravitational theories
Nielsen, Ninomiya (1978)
………………………………………….
Sundrum (2012)
Bednik, Pujolas, S.S. (2013)
S.S. (2014)

But satisfying                                requires extreme fine-tuning

from GW170817 / 

GRB170817A

|cg � c� | < 10�15

• In projectable HL gravity in (3+1)d the scalar mode is unstable at low-
(at weak coupling)

Gümrükçüoglu, Saravani, Sotiriou (2017)

Blas, Pujolas, S.S., (2009, 2010, 2011)





Outlook

Use HL as a toy model to address puzzles of GR

• Characterization of observables

• Resolution of singularities

• Information paradox (?)

Emergence of Lorentz through strong coupling ?


