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Can gravity be formulated as a UV complete
Quantum Field Theory ?

(unitary, finite number of d.o.f., under control, ...)
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Why GR is not UV complete ?

M2 quadratic action

Sy = /dd“x VIR sets the amplitude
2 of fluctuations

2 r N
* ]\g /dd+1 (hijOhij + R*0Oh+...)

iInteraction terms

. 1
Zoom in on shorter scales: x"' — b~z

To preserve the quadratic action scale the metric:

_ scaling dimension
Look at the interactions: 5;,,; + pld 1)/QSmt J

For d > 1 the interaction strength grows unboundedly at short

distances (b — ©0)
Generation of higher-order operators -> loss of predictive power
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Interactions contain arbitrarily high powers of the metric
Different from Yang-Mills theory, similar to sigma models

If we want to bound the interactions in UV we need to
reduce the scaling dimension of /;; to zero

dominates at high energies,

4 2 L o determines the scaling dim
@’z/g (MpR + Ry R + R) of the metric in UV

Fast decrease of the graviton propagator (h h) o< 1/k* improves
convergence of the loop integrals. The theory is renormalizable
and asymptotically free !

But higher time derivatives give ghost poles 1 1

-> no unitary interpretation (hh) ~ K2 k21 MZQD
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Never give up

Imagine that spacetime is endowed with a Horava (2009)

preferred spacelike foliation

s V=

General covariance is reduced to foliation- /\I/

preserving diffeomorphisms /\/\

Write Lagrangians that have more than 2 space derivatives (but ->>(
still 2 time derivatives). Use different scaling of time and space
(Lifshitz scaling)

/fit ddili<hwhw — hw(—A)ZhZ] -+ .. )

X b—(z—|—d)

’ hz’j — b(d_z)/thj

x b %,  ts b7t
critical theory in z = d



“ETs SEE \E WE COULD PUTA SPIN ONIT
AND GET THe PUBLIC INTERESTED.™
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We want to preserve as many symmetries, as possible
: T 17 9 NZ
foliation-preserving 3" TH(x, 1) s L
diffeos ¢ f(t) > N

r

L= Mp/yN(K;; K" — XK*? = V[vi;, N]) dimy;; = dimN =0

N HmN = d — 1
S — VN: — VN, contains terms
1) 14V 74V

Kij; = N with up to 2d
spatial derivatives

Reduces to a scalar-tensor gravity at low energies
Blas, Pujolas, S.S. (2009, 2010)

* L= Mz /gR+ Ly 9uws X
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A naive “proof”:

Z = / [dh]e®

— Z (—nl!)” /[dh]eSO /dazl codxp Line(x1) .. Lint(xn)

W, _—
.l

dim < 0
Divergences are local and are removed by local counterterms
of dim < 2d tha] are already present in the action

l
this is not guaranteed because of gauge invariance



Toy model: d=2 “projectable”

“projectability condition” N = N(¢) =@ set N = 1 by gauge-fixing
time and forget
dim~y;; = 0 dimN* = 2

1

Kinij — )\[(2 — /LRgp)

- is fully parameterized by 3 couplings

- unlike GR in 3d, has propagating d.o.f., a single scalar

- is well-behaved for G, >0and A < 1/2 or A > 1
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Gauge fixing

We need to fix spatial diffeos linear combination
‘4 of the fields
/Lgf — ﬁFZO _FW‘7
must have dim=4 to invertible operator
preserve power-counting
Fio— N P G
* <N N]> >, 523
y | k?
Local O * " = 0jhi; + 0'0ih /
no dependence on
energy
(N(t,2)N7(0)) > Oij ~25(t) log |x| the singularity is non-local (in space)
am Hard to keep track of divergences

Similar to the Coulomb gauge in YM. What is the analog of
covariant gauges ?



Regular propagators
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Regular propagators

D] =71, |[Ps] =7y under Lifshitz scaling with 2z = d

(1P2) = Z P(z, )

D(w, k)
M
o o GEETD
m=1
P polynomial of degree 71 + 7o + 2(M (to ensure the

correct scaling at short distances)

Regular propagators have local smgularltles N posmon space
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Regular gauges
We have to allow for non-local gf. Lagrangian. Good choice:
Oi; = — (652 + €8;0;)

) T1 1 —1 A —1
F'"' =N+ 2—01,] 6kh3k — %O”LJ ﬁjh

o

- disentangle h;; from N’ in the quadratic action

* regular propagators for all fields (including Faddeev-Popov ghosts)

- two free gf. parameters o, ¢

- straightforward generalizationto d > 2, e.g.

O;ljzg = A1 ((&LQA -+ f&;c‘?j)_l
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Diagrammatics in brief

induction in the number of loops

subdivergences are cancelled by counterterms introduced at
the previous steps

introduce the degree of divergence D defined as the scaling
of the diagram under stretching the loop momenta and
frequencies kZOOp — bklOop , Wioop ™ b” Wioop

if all@tors are@diagrams with D < 0 converge

diags. with D > 0 require local counterterms of scaling
dimension at most 2d




Comments

- Straightforward generalization to projectable HL gravity in any
dimensions

« Does not work for non-projectable: additional variable N =1 + ¢

1
(p@) = regular + 15

present even in o& - gauges
physical: shows up in the interaction of local sources

Cancellation of non-local divergence due to
time-reparameterization ?7??
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Gauge invariance ?

Gl is explicitly broken by the gauge-fixing. Instead, we have to rely
on the BRST symmetry (Slavnov-Taylor identities)

Non-linearity of BRST -> deformation by quantum
corrections. To restore original BRST, the gauge fields must be
redefined at every loop order

To restore original BRST, the gauge fields must be redefined at
every loop order.

dimh,;; = O =i the redefinition can be non-linear (unlike YM)

Textbook YM treatment: relies on explicit power counting

Beyond PC: relies on relativistic invariance and the explicit
structure of the gauge group

Everything from scratch !
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Renormalization in the background-field method
Decompose the fields in the “background” and “quantum fluctuations”
Yij = Yij +hij , N'=N'+4+n’
Doubles the number of Gl:

- BRST transformations acting on fluctuations
- Backgroung Gl acting on both. Acts linearly !

one-loop counterterms are manifestly gauge-invariant

* at higher loops BGI helps to explicitly separate redefinition of
quantum fields from renormalization of couplings

General result: BRST structure is preserved in any non-
anomalous gauge theory admitting sensible BF formulation

- YM, GR and their higher-derivative extensions
* non-relativistic gauge theories
- theories with U(1) subgroups



MIRACL
" occuRsE.

A4S

I think you should be a little
more specific, here in Step 2



Renormalization group
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Renormalization group

1 iy
£ — %(KZ]KJ — )\[(2 — ,URgp)

B -functions are not separately gauge invariant

Background effective action gets contributions proportional to
eom’s when the gauge is changed

F—T+a / dt &>z (K;; KY — AK*+uR?)

Invariant combinations:




Sit down and calculate



Sit down and calculate

 fix the background gauge

3 gauge choices: 2 regular + conformal /;; = %-625



Sit down and calculate

 fix the background gauge

3 gauge choices: 2 regular + conformal /;; = %-625

* expand background: 7;; = d;; + H;,



Sit down and calculate

 fix the background gauge

3 gauge choices: 2 regular + conformal /;; = %-625

* expand background: 7;; = d;; + H;,

 integrate out fluctuations



Sit down and calculate

fix the background gauge

3 gauge choices: 2 regular + conformal /;; = %-625

expand background: 7,;; = d;; + H;;

extract divergent parts of coefficients in front of
HiHy; , (Hy)? ) (0:0;Hy)

! ! !
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fix the background gauge

3 gauge choices: 2 regular + conformal 5h;; = 7;¢

Sit down and calculate

expand background: 7,;; = d;; + H;;

integrate out fluctuations @
H

extract divergent parts of coefficients in front of

dx
dlog A

15 — 14\

!

G

1 —2)\

64

I—A

g

(Hyi)?

!

A

ig
dlogA

(0;,0;H;;)°

!

1

(16 — 33X 4 18)2)

2¢

-\ o

64m(1 — \)?

1 —2)\



RG portrait of Horava-Lifshitz gravity in (2+1)d
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RG portrait of Horava-Lifshitz gravity in (2+1)d

RG flow of essential couplings:

g i
1/4- !
E\ 1

-CE ﬁ

= i

B |

- i

O !

z |

N R yuhi

172/5% A\

| I
strongly coupled asymptotically free

_ IR behavior - UV fixed point
Smth interesting is going on here
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Towards RG flows in (3+1)d

Contains a dynamical graviton (transverse-traceless tensor mode)
/ couplings, 6 essential
27(1 — N)? + 3y/a(11 — 3X\)(1 — X) — 2a(1 — 3))?

= 12072(1 + \/awaya\ )
S| X = VS/Vtt
<0

4 _ w? = vgk®
'q% B>0

3 E wt2t — Vttk6

2t £>0 (z%

7\ candidate

1} = UV fixed points
(=

8 -6 -4 -2 0 2 4 6 3 10 NB. Non-trivial: AF could

A have failed
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Horava-Lifshitz gravity: Theory summary

e Projectable models represent a class of renormalizable
gravity theories .

[}

| no local gauge-invariant |
| observables, spin-2 d.o.f. |

* In (2+1)d asymptotically free (UV complete); possibly also in (3+1)

* In IR goes into strong coupling — What is it ? (gravitational
confinement ?? non-trivial fixed point ?7?)

* No definitive answer abour renormalizability of the non-
projectable version



Horava-Lifshitz gravity: pheno status



Horava-Lifshitz gravity: pheno status

* |n projectable HL gravity in (3+1)d the scalar mode is unstable at low-
(at weak coupling)



Horava-Lifshitz gravity: pheno status

* |n projectable HL gravity in (3+1)d the scalar mode is unstable at low-
(at weak coupling)

* Phenomenology of non-projectable HL gravity can be close to GR



Horava-Lifshitz gravity: pheno status

* |n projectable HL gravity in (3+1)d the scalar mode is unstable at low-
(at weak coupling)

* Phenomenology of non-projectable HL gravity can be close to GR

* Lorentz invariance is fundamentally broken. Can it emerge as
low-energy property ?



Horava-Lifshitz gravity: pheno status

* |n projectable HL gravity in (3+1)d the scalar mode is unstable at low-
(at weak coupling)

* Phenomenology of non-projectable HL gravity can be close to GR

* Lorentz invariance is fundamentally broken. Can it emerge as
low-energy property ?

Quite common in non-gravitational theories



Horava-Lifshitz gravity: pheno status

* |n projectable HL gravity in (3+1)d the scalar mode is unstable at low-
(at weak coupling)

* Phenomenology of non-projectable HL gravity can be close to GR

* Lorentz invariance is fundamentally broken. Can it emerge as
low-energy property ?

Quite common in non-gravitational theories

But satisfying |c, — c,| < 10~ '° requires extreme fine-tuning

AN

from GW170817 /
GRB170817A



"The beauty of this is that it is only of
theoretical importance, and there is no way
it can be of any practical use whatsoever."



Outlook

& Use HL as a toy model to address puzzles of GR

- Characterization of observables
+ Resolution of singularities
- Information paradox (?)

& Emergence of Lorentz through strong coupling ?



