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What is Conformal Field Theory?

relativistic theory of
massless quantum fields

algebra of operators

continuous limit of lattice
systems

theory of quantum gravity




Motivation to study thermalization in CFT's

e Thermalization in 1D systems after a quantum quench
o CFT thermal physics < black hole physics

e Eigenstate Thermalization Hypothesis in CFT

- new property of CFT correlation functions

- fundamental difference between small and large c
theories?



Conformal symmetry & KdV hierarchy

e Conformal symmetry controls many aspects of 2d CFT
dynamics

e Holographically, many aspects of classical gravity emerge
from conformal symmetry

e Solving CFTs in 2d requires understanding KdV hierarchy

- ETH = property of “correct” qKdV basis of CFT
descendants

e Modular invariance may mix symmetry protected and
unprotected data



Origin of qKdV charges

e Verma module (free action of L,,)
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e quantum KdV charges Qor_1
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Classical vs quantum

e co-adjoint orbit of Virasoro algebra
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@ stress-tensor in 2d conformal field theory
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What are KdV charges?

e classical KdV hierarchy
Q= [doue) Qu= [dputeP, Qi [dpute) 200

charges generate Hamiltonian dynamics
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e quantum KdV hierarchy
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Quantum KdV charges of 2d CFTs

e infinite tower of charges in involution
¢
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Quantum KdV charges in 2d CFT's

infinite tower of charges (2,1 in involution

spectrum of Q1 = Lo — ¢/24 is highly degenerate,
spectrum of all other charges is not

quantum KdV hierarchy defines preferred eigenbasis on
the Verma module

UY=Ly oo Lo |A) + .., Qok—1]¥) = Aog_1|P)
and hence on the space of descendants of 2d CFT

a priory quantum numbers to index |¥) are not known



Spectrum of ()3

e spectrum of ()3 can be parametrized by Young diagrams
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e free boson representation,
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o free shift of A’ = A — ¢/24 (inspired by holography)



Spectrum of ()3

spectrum of ()3 in terms of “boundary gravitons”
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qKdV hierarchy at large ¢

e Spectrum of Qo1 at first two orders in 1/c was
calculated in terms of “boundary gravitons”

guesswork supported by quasi-classical quantization

o Spectrum of Q3, Qs is known up to 1/c¢?

e Generalized partition function in cylinder limit is known
including leading 1/c corrections



Generalized Eigenstate Thermalization
in 2d CFTs



Eigenstate Thermalization Hypothesis

e Eigenstate Thermalization Hypothesis - ansatz for the
matrix elements in the energy eigenbasis

(E;|O|E}) = 6;; fo(E:) + e %*g0(E;, E;)Ry;

e ETH predicts emergence of thermal equilibrium under the
assumption that the latter is equal to the diagonal
ensemble
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Generalized Eigenstate Thermalization

what is the minimal set of physical quantities
characterizing an equilibrium state?

e Eigenstate Thermalization - energy is the only
thermodynamically-relevant quantity

(Ei|O|E;) = fo(E:)

o Generalized Eigenstate Thermalization - infinite tower of
thermodynamically-relevant quantities

(Ei|O|E;) = fo(Ei, L)



ETH in CFT

quantization of CFT on a cylinder S' x R
thermodynamic limit (while ¢ is fixed)
E/t —fixed, ¢ — o0

spectrum of H is highly degenerate, hence diagonal
ensemble may not have full predictive power

ETH in 2d CFT — statement about special KdV basis

(E|O|E) = fo(Q2r-1)



Generalized Eigenstate Thermalization

in 2d CEFTs

e working in the “quasi-classical” regime

QQ;,I;I —1=0(1/c), Qu_1= q”z—l — fixed, £ — o0
e expectation values of quasi-primaries from the vacuum
block in KdV eigenstates |¥) = |ny, A) depend on gox_1

for example, at level 8
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Generalized Eigenstate Thermalization
in 2d CFTs at second order in 1/¢

o we introduce dqap_1 = ¢; "qur—1 — 1 ~ O(1/c), 6 =A/c

o level 6 operator
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e at 1/c order strong ETH even without taking ¢ — oo limit



Weak ETH

e typicality of thermal eigenstates in thermodynamic limit

order one contribution in the thermodynamic limit
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%ank% L /dkk2p Yn(k), k= 7
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suppressed contribution in the thermodynamic limit
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Matching Eigenstates to GGE

e regular systems with non-degenerate spectrum satisfying
generalized ETH are expected to thermalize to
Generalized Gibbs Ensemble

p = exp {— ZMQk—lQ%—l} /Z
k=1

e in 2d CFTs generalized ETH guarantees equivalence of
KdV-eigenstate and GGE ensembles, provided there are
Jor_1 for the given set of g1, but can not
unambiguously predict emergence of GGE at late times



Matching Eigenstates to GGE

e matching GGE to KdV eigenstates
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e primary states - singular GGE ensemble

o when ¢3/¢7 — 1> % some of the chemical potentials
have to be negative

e at leading order in ¢, dual black hole is the conventional
BTZ solution controlled by g1, ¢;



Main results

e gKdV hierarchy defines preferred basis of CFT eigenstates

— control over eigenvalues/eigenvectors of qKdV
charges at first two orders in 1/¢

— GGE/generalized partition function
— modular invariance?. . .

o Generalized Eigenstate Thermalization in 2d CFTs

— analytic result establishing (weak) ETH

— completeness of qKdV charges to describe KdV
eigenstate

— late time equilibrium? ...



