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What is Conformal Field Theory?

o

354 A A Belavm et al / lnfimte conformalsvmmeto, 

The crossing symmetry conditions for the four-point functions (4.9) can be 
represented as the following dlagramnuc equatmns 
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The analytic form of these equations is 

Ecf..c,~S.'~(plx)~/~(plX) = E Q C m k q g f f ~  (ql  1 - x ) ~ g k ( q l  1 - ~) 
P q 

(4.18) 

If the conformal blocks g are known, (4 18) yields a system of equations, deterrmn- 
mg the constants CJm and the dimensions A ,  An Therefore, the computation of the 
conformal blocks (4.16) for general values of An's is the problem of principle 
importance for the conformal quantum field theory. The first few terms of the power 
expansion for these functions are given in appendtx B, where the case A n = A m = A k 
= A~ = A is considered for the sake of slmphclty. Although the conformal blocks are 
not yet known for the general case, there are the special values of the dimensions A 
(associated with the degenerate representaUon of the Virasoro algebra, see sect 5) 
such that the corresponding conformal blocks can be computed exactly, being the 
solutions of certain linear differential equations The s~mplest example is the 
hypergeometnc function. In these special cases the bootstrap eq (4 18) can be solved 
completely. 

5. Degenerate conformal families 

The representation V a of the Vlrasoro algebra is irreducible unless the dimension 
A takes some special values [6, 7]. For these values the vector space V a proves to 
contain a special vector (the null vector) IX) ~ V~ satisfying the equations 

L,,]X) = 0, If n > 0, 

LolX ) = (a  + K ) I x ) ,  (5 1) 

characteristic of the pnmary fields Here K is some posmve integer. For example, 
one can easdy venfy that the vector 

[ 3 ] 
IX)=  L - 2 + 2 ( 2 ~ + 1 )  L2-~ IA) '  (5 2) 

- relativistic theory of
massless quantum fields

- algebra of operators

- continuous limit of lattice
systems

- theory of quantum gravity



Motivation to study thermalization in CFTs

Thermalization in 1D systems after a quantum quench

CFT thermal physics ⇔ black hole physics

Eigenstate Thermalization Hypothesis in CFT

- new property of CFT correlation functions

- fundamental difference between small and large c
theories?



Conformal symmetry & KdV hierarchy

Conformal symmetry controls many aspects of 2d CFT
dynamics

Holographically, many aspects of classical gravity emerge
from conformal symmetry

Solving CFTs in 2d requires understanding KdV hierarchy

- ETH = property of “correct” qKdV basis of CFT

descendants

Modular invariance may mix symmetry protected and
unprotected data



Origin of qKdV charges

Verma module (free action of Ln)

L−m1 . . . L−mk
|∆〉, m1 ≥ m2 ≥ . . .mk ≥ 0

quantum KdV charges Q2k−1

H ≡ Q1 =

∫ `

0
duT (u), Q3 =

∫ `

0
duT (u)2, . . .

Q2k−1 commute and act within the Verma module



Classical vs quantum

co-adjoint orbit of Virasoro algebra

−ψ′′ + uψ = 0 ⇒ −ψ̃′′ + ũ ψ̃ = 0

ũ(θ) =

(
dθ

dϕ

)−2(
u+

1

2
{θ, ϕ}

)
c

6π
{u(ϕ), u(ϕ′)} = 4u(φ)δ′(ϕ−ϕ′)+2u′(ϕ)δ(ϕ−ϕ′)−δ′′′(ϕ−ϕ′)

stress-tensor in 2d conformal field theory

T̃ (w) =

(
dw

dz

)−2 (
T +

c

12
{w, z}

)
[Ln, Lm] = (n−m)Ln+m +

c

12
(n3 − n)δn+m



What are KdV charges?

classical KdV hierarchy

Q1 =

∫
dϕu(ϕ), Q3 =

∫
dϕu(ϕ)2, Q5 =

∫
dϕu(ϕ)3+2u′(ϕ)2,

charges generate Hamiltonian dynamics

u̇ = {Q1, u} = ∂u, u̇ = {Q3, u} = 6u ∂u− ∂3u

quantum KdV hierarchy

Q1 =

∫
dϕT, Q3 =

∫
dϕT 2, Q5 =

∫
dϕT 3 +

c+ 2

12
T ′2,

Ṫ = [Q1, T ] = ∂ϕT, Ṫ = [Q3, T ] = −3∂(TT )− c− 1

6
∂3T



Quantum KdV charges of 2d CFTs

infinite tower of charges in involution

H ≡ Q1 =

∫ `

0
dϕT (ϕ), Q3 =

∫ `

0
dϕT (ϕ)2, . . .

`1Q1 = L0 −
c

24

`3Q3 = L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2880
+ 2

∞∑
n=1

L−nLn

`5Q5 = L3
0 −

c+ 4

8
L2
0 +

(c+ 2)(3c+ 20)

576
L0 −

c(3c+ 14)(7c+ 68)

290304
+

∑
: Ln1Ln2Ln3 : +

∞∑
n=1

(
(c+ 11)

6
n2 − 4 + c

4

)
L−nLn +

3

2

+∞∑
r=1

L1−2rL2r−1



Quantum KdV charges in 2d CFTs

infinite tower of charges Q2k−1 in involution

spectrum of Q1 = L0 − c/24 is highly degenerate,

spectrum of all other charges is not

quantum KdV hierarchy defines preferred eigenbasis on

the Verma module

|Ψ〉 = L−m1 . . . L−mk
|∆〉+ . . . , Q2k−1|Ψ〉 = λ2k−1|Ψ〉

and hence on the space of descendants of 2d CFT

a priory quantum numbers to index |Ψ〉 are not known



Spectrum of Q3

spectrum of Q3 can be parametrized by Young diagrams

`3Q3|mi,∆〉 = λ3|mi,∆〉, |mi,∆〉 = L−m1 . . . L−mr |∆〉+ . . .

λ3 = P2(∆ + n) + 4∆
∑
i

mi +
c

6

∑
i

(
m3
i −mi

)
+ . . .

free boson representation,∑
i

(mi)
p =

∑
k

nk k
p

free shift of ∆′ = ∆− c/24 (inspired by holography)



Spectrum of Q3

spectrum of Q3 in terms of “boundary gravitons”

`3Q3|nk,∆〉 = λ|nk,∆〉

λ3 = ∆′2 + ∆′

(∑
k

nk 6k − 1

6

)
+ c

(∑
k

nk
k3

6
+

1

1440

)
+

∑
k

nk

(
(5k3 − 9k2)

6
+ 36(2k − 1)

∆′

c

)
−

∑
k

n2k

(
3
k2

2
+ 36

∆′

c

)
+ 2

(∑
k

nk k

)2

+O(1/c)



qKdV hierarchy at large c

Spectrum of Q2k−1 at first two orders in 1/c was

calculated in terms of “boundary gravitons”

guesswork supported by quasi-classical quantization

Spectrum of Q3, Q5 is known up to 1/c2

Generalized partition function in cylinder limit is known
including leading 1/c corrections



Generalized Eigenstate Thermalization
in 2d CFTs



Eigenstate Thermalization Hypothesis

Eigenstate Thermalization Hypothesis - ansatz for the
matrix elements in the energy eigenbasis

〈Ei|O|Ej〉 = δijfO(Ei) + e−S/2gO(Ei, Ej)Rij

ETH predicts emergence of thermal equilibrium under the
assumption that the latter is equal to the diagonal
ensemble

〈ψ|O(t)|ψ〉 =
∑
i

|Ci|2〈Ei|O|Ei〉+
∑
i 6=j

C∗i Cj〈Ei|O|Ej〉e−i(Ei−Ej)t



Generalized Eigenstate Thermalization

what is the minimal set of physical quantities
characterizing an equilibrium state?

Eigenstate Thermalization - energy is the only
thermodynamically-relevant quantity

〈Ei|O|Ei〉 = fO(Ei)

Generalized Eigenstate Thermalization - infinite tower of
thermodynamically-relevant quantities

〈Ei|O|Ei〉 = fO(Ei, Iai )



ETH in CFT

quantization of CFT on a cylinder S1 ×R

thermodynamic limit (while c is fixed)

E/`− fixed, `→∞

spectrum of H is highly degenerate, hence diagonal
ensemble may not have full predictive power

ETH in 2d CFT – statement about special KdV basis

〈E|O|E〉 = fO(Q2k−1)



Generalized Eigenstate Thermalization
in 2d CFTs

working in the “quasi-classical” regime

q2k−1

qk1
− 1 = O(1/c), Q2k−1 =

q2k−1
`
− fixed, `→∞

expectation values of quasi-primaries from the vacuum
block in KdV eigenstates |Ψ〉 = |nk,∆〉 depend on q2k−1
for example, at level 8

O = (∂2T∂2T )− 10

9
(∂T∂3T ) +

10

63
(T∂4T )− 13

2268
∂6T

〈Ψ|O|Ψ〉 =
63

143

180

c2
(
q7 − q41 − 4q1(q5 − q31) + 6q1(q3 − q21)

)
+O(c0)



Generalized Eigenstate Thermalization
in 2d CFTs at second order in 1/c

we introduce δq2k−1 ≡ q−k1 q2k−1 − 1 ∼ O(1/c), δ = ∆/c

level 6 operator

O(2)
6 = (∂T∂T )− 4

5
(T∂2T ) +

23

210
∂4T.

eigenstate expectation value

5

18
〈Ψ|O(2)

6 |Ψ〉 = q31

[
6

c
(δq5 − 3δq3)−

1

c2
(84δq5 + 180δq3)

]
−∑

k

n2k

(
1

2
k4 + 72k2δ + 864δ2

)
+O(1/c)

at 1/c order strong ETH even without taking `→∞ limit



Weak ETH

typicality of thermal eigenstates in thermodynamic limit

order one contribution in the thermodynamic limit

1

`2p

∑
k

nk k
2p−1 →

∫
d k k2p−1 n(k), k =

k

`

suppressed contribution in the thermodynamic limit

1

`2p

∑
k

n2k k
2p−2 → 1

`

∫
d k k2p−2 n2(k)



Matching Eigenstates to GGE

regular systems with non-degenerate spectrum satisfying
generalized ETH are expected to thermalize to
Generalized Gibbs Ensemble

ρ = exp

{
−
∞∑
k=1

µ2k−1Q2k−1

}
/Z

in 2d CFTs generalized ETH guarantees equivalence of
KdV-eigenstate and GGE ensembles, provided there are
µ2k−1 for the given set of q2k−1, but can not
unambiguously predict emergence of GGE at late times



Matching Eigenstates to GGE

matching GGE to KdV eigenstates

q2k−1

qk1
− 1 =

24k

c

∫ ∞
0

dκκ
[
(2k − 1)2F1(1, 1− k, 3/2,−κ2)− 1

]
e2πκγ − 1

,

γ =

∞∑
k=1

t2k−1k(2k − 1)σk−1/22F1(1, 1− k, 3/2,−κ2) ≥ 1

primary states - singular GGE ensemble

when q3/q
2
1 − 1 ≥ 22

5c
some of the chemical potentials

have to be negative

at leading order in c, dual black hole is the conventional
BTZ solution controlled by q1, q̄1



Main results

qKdV hierarchy defines preferred basis of CFT eigenstates

− control over eigenvalues/eigenvectors of qKdV

charges at first two orders in 1/c

− GGE/generalized partition function

− modular invariance?. . .

Generalized Eigenstate Thermalization in 2d CFTs

− analytic result establishing (weak) ETH

− completeness of qKdV charges to describe KdV
eigenstate

− late time equilibrium? . . .


