
Special Kähler geometry, Localization and Mirror symmetry

Alexander Belavin

(joint with K. Aleshkin and A. Litvinov)

Landau Institute, Moscow

2019



Overview

Superstring theory is considered as a possible approach for unifying the
Standard model and Quantum gravity.

If we wish to obtain 4d theory with Space-Time supersymmetry (which is
needed for the phemenological reasons) we have to compactify 6 of 10
dimensions of Superstring theory on Calabi-Yau manifolds X .

In result we obtain the 4-d low-energy effective theory Supergravity theory.
The Lagrangian of the effective theory is defined by so called Special
Kähler geometry which appears on the moduli space of CY manifold X .

Indeed the moduli space of CY manifold X is a product of two factors:
Moduli space Mk(X ) of the Kähler structure defomations and Moduli
space of the complex structure deformations Mc(X ).

Therefore for finding the Effective low energy theory we have to compute
the Special Kähler geometry on the both Moduli spaces of CY manifolds.



Introduction

Recently we suggest an efficient approach for computing Special geometry
on the complex moduli space. Our approach is based on the isomorphism
between the cohomologies on CY and Chiral ring defined by the
polynomial WX whose zero locus is the CY hypersurface X in the weighted
projective space.

On the other hand it was suggested recently a conjecture for the explicit
expressions the Kähler potential the Kähler moduli spaces [Jockers et al].
This conjecture (JKLMR conjecture) is the equality

e−Kk (Y ) = ZS2 (Y )

where Kk(Y ) is the Kähler potential of the Special geometry on the
Kähler moduli space of CY as the hypersurface Y in a toric variety.

Here ZS2 (Y ) is the partition function of the Witten gauged linear sigma
model (GLSM) on S2 which was exactly computed by Supersymmetric
localization [Benini et al, Doroud et al ].
CY manifold Y is the manifold of the supersymmetric vacua of the GLSM.

Since we want to know Special Kähler geometry of the both Moduli
spaces for each given family Calabi-Yau manifolds, we need to find the
connection between these two computations.



Introduction

To reach this goul we use the Mirror symmetry and the duality of the
Batyrev’s reflexive polytopes.

The Mirror symmetry , if Y is the mirror manifold to X together with
JKLMR conjecture predict the relation

e−Kc (X ) = ZS2 (Y ) = e−Kk (Y ).

So the problem is to find Y that is the mirror counterpart for X .
We do this with help the Batyrev construction.

The main idea of Batyrev is to interpret the monomials of the
homogenious polynom WX which defines CY hypersurface X as the lattice
points of the Polytope defining the enveloping weighted projective space.

These lattice points are used for constructing Fan which defines Y , which
is mirror to X , as a hypersurface in the toric manifold built by the Fan.

Knowing the Fan we also find the corresponding GLSM and the values of
the electric charges of the chiral fields as the coefficients in the linear
relations between the vectors of the Fan.

In result we obtain the explicit expressions for the Special geometry of the
both moduli spaces.



Covariantly constant spinor and 3, 0 form Ω

The requirement for the compact 6d manifold X to be CY manifold arises as
follows.

Since after the compactification the background has to be invariant with
respect to d=4 Super-Poincaré algebra, then the supersymmetry variations of
the gravitini have to vanish

〈δεψµ,α〉 = 〈∇µεα〉 = 0.

It means that X admits the covariantly constant spinor field.
The existence of the covariantly constant spinor is one of the few equivalent
definitions of Calabi-Yau manifold.

Another important properthy of three-dimensional Calabi-Yau manifold is
existence on X the holomorphic nonvanishing 3, 0 form.
We will denote it Ω.

The Kähler potential of the Special geometry on the complex moduli space of
X can be expressed in terms of the form Ω.



Special geometry on moduli space of complex structures.

The Kähler potential of this geometry is given by the logarithm of the
holomorphic volume of Calabi-Yau manifold Xφ
(φ denote the parameters of the complex structure of CY):

G(φ)ab̄ = ∂a∂b K(φ, φ̄)

e−K(φ) =

∫
Xφ

Ω ∧ Ω.

This can be rewritten in terms of periods of Ω as:

ωµ(φ) =

∫
qµ

Ω, qµ ∈ H3(X ,R).

e−K = ωµ(φ)Cµν ων(φ),

where Cµν = [qµ] ∩ [qν ] is an intersection matrix of 3-cycles.



Example. Hypersurfaces in weighted projective spaces

Consider the 4-d weighted projective space

P4
(k1:...:k5) := C5\{0} = /C∗ = {(x1 : . . . : x5) | xi ∼ λki xi , x̄ 6= 0}.

When ki = 1 we have an ordinary projective space. Each variable has integral
degree (or U(1) charge) ki .

W (x) is weighted homogeneous ⇐⇒ W (λki xi ) = λdW (xi ) =⇒ its zero
locus X = {W = 0} ⊂ P4

k̄ is well-defined.

W (x) is non-degenerate if dW (x) = 0,W = 0 takes place only when x = 0.
In this case X is not singularic manifold.

W (x) defines a Calabi-Yau manifold ⇐⇒
∑5

i=1 ki = d . We consider the
family of of Calabi-Yau manifolds defined as the zero locus of the polynomals

W (x , φ) = W0(x) +
h∑

s=1

φses(x).

such that manifolds with different φ have different complex structures.

The holomorphic volume form is explicitly

Ω =
x5dx1dx2dx3

∂W (x , φ)/∂x4
=

∮
x5=0

∮
W=0

d5x

W (x , φ)
.



Special geometry of CYs in WPS

The periods of such a form are

ωi (φ) :=

∫
qi

Ω =

∫
Qi

d5x

W (x , φ)
.

A good example is the quintic threefold in the projective space P4:

X = {(x1 : · · · : x5) ∈ P4 |W (x , φ) = 0},

W (x , φ) = W0(x) +
100∑
t=0

φtet(x), W0(x) = x5
1 + x5

2 + x5
3 + x5

4 + x5
5

and et(x) are the degree 5 monomials such that each variable has the power
that is a non-negative integer less then four.
The chiral ring defined as

RQ =
C[x1, . . . , x5]Q

(∂1W , . . . , ∂5W )
.

invariant under the discrete gauge symmetry Q : Xi → e2πiki/dXi and
decomposes as

RQ = 〈1〉 ⊕ (RQ)1 ⊕ (RQ)2 ⊕ 〈HessW 〉.

Let ea(x)a are elements of a basis of the chiral ring.



Special geometry of CYs in WPS

Kähler potential for the Special geometry can be written in terms of the
oscilatory integrals as

e−K = C ij

∫
Q i

+

e−W (x,φ)d5x

∫
Q i
−

eW (x,φ)d5x .

It can be derived from the equality

ωµ(φ) =

∫
qµ

Ω =

∫
Qi

d5x

W (x , φ)
=

∫
Q+
i

e−W (x,φ)d5x

.



Oscillatory integral cohomology

The key point for computing the periods is the Stokes formula for oscillatory
integrals which implies∫

e−WD−α :=

∫
e−W (dα− dW ∧ α) = 0.

Therefore the oscillatory integrands ea(x) d5x form a cohomology group
H5

D−(C5)Q which is dual to steepest descent contours H5(C5,Re(W )� 0)Q .

Define a basis of cycles by duality formula

〈Γa
+, eb(x)d5x〉 =

∫
Γa+

e−W0eb(x) d5x = δab.

The cycles Γa
+ are not actual geometric cycles but complex linear combinations

of such cycles.

Using the duality it is very easy to find that the intersection matrix of cycles
Γi

+ ∩ Γj
− = (η−1)ij , where ηij is a residue pairing for the RQ

ηij = Res
ei (x) ej(x) d5x

∂1W0 · · · ∂5W0
.



Main working formula

We use the formula for the Kähler potential in the basis of cycles Γi
+:

e−K = ηij
∫

Γi+

e−W (x,φ)d5x

∫
Γi−

eW (x,φ)d5x ,

where the last conjugation is due to the fact that Γi
± are linear combinations of

cycles with complex coefficients.

We denote

σi (φ) :=

∫
Γi+

e−W (x,φ)d5x , Γj
− = Mk

j Γk
−

for a matrix Mk
j which is called the real structure matrix. MM̄ = 1.

Our main formula becomes

e−K = σi (φ) ηikMj
k σj(φ).



Special geometry for the quintic

Quintic CY manifold X be given as a solution of the equation

W (x , φ) =
5∑

i=1

x5
i +

101∑
l=1

φl

5∏
i=1

x sli
i = 0

0 ≤ si ≤ 3, deg(s) :=
∑5

i=1 si = 5.
The complex structures Kähler potential in this case is

e−K(φ) =
203∑
µ=0

(−1)deg(µ)/5
5∏

i=1

γ

(
µi + 1

5

)
|σµ(φ)|2,

σµ(φ) =
∑

n1,...,n5≥0

5∏
i=1

Γ(µi+1
5

+ ni )

Γ(µi+1
5

)

∑
m1,...,m101∈Σn

101∏
l=1

φ
ml
l

ml !
,

µ=(µ1, µ2, µ3, µ4, µ5), 0 ≤ µi ≤ 3, deg(µ) =
∑5

i=1 µi = 0, 5, 10, 15.

γ(x) =
Γ(x)

Γ(1− x)
, Σn = {ml |

101∑
l=1

mlsli = 5ni + µi}
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Special geometry for Fermat hypersurfaces

The Fermat hypersurfaces (around 100 threefolds) are given by

W (x , φ) =
5∑

i=1

x
d/ki
i +

h∑
l=1

φl

5∏
i=1

x sli
i = 0

0 ≤ sli ≤ d/ki − 1 and
∑5

i=1 ki sli =
∑5

i=1 ki := d .
The complex structures Kähler potential in this case is

e−K(φ) =
2h+1∑
µ=0

(−1)deg(µ)/d
∏

γ

(
ki (µi + 1)

d

)
|σµ(φ)|2,

σµ(φ) =
∑

n1,...,n5≥0

5∏
i=1

Γ( ki (µi+1)
d

+ ni )

Γ( ki (µi+1)
d

)

∑
ml∈Σn

∏
l

φ
ml
s

ml !
,

µ=(µ1, µ2, µ3, µ4, µ5), 0 ≤ µi ≤ d/ki − 1,
∑5

i=1 µi = 0, d , 2d , 3d .

Σn = {ml |
∑
l

mlsliki = dni + kiµi}
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Gauged Linear Sigma Models

The 2d N=(2,2) supersymmetric GLSM have superspace Lagrangians of the
type

L =

∫
d4θ

(
N∑

a=1

Φae
QalVl Φa −

∑
l

1

2e2
l

ΣlΣl

)
+

+
1

2

(
−
∫

d2θ̃

k∑
l=1

tlΣl +

∫
d2θW (Φ) + h.c.

)
,

where Vl is 2d vector multiplets, Φa are 2d chiral multiplets which are charged
with respect to the Ul(1) gauge group with the charges Qal . W (Φ) is the
superpotential which is gauge invariant.
The parameters tl = rl + iθl are complexified Fayet-Iliopoulos terms. The
theory has the potential energy for the scalar fields

U =
k∑

l=1

e2
l

2

(
N∑

a=1

Qal |φa|2 − rl

)2

+
k∑

a=1

∣∣∣∣∂W∂φa

∣∣∣∣2 .
Depending on rl the vacuum manifold can be either a nontrivial manifold or a
point φ = 0. In the first case the theory flows to a nonlinear sigma model in
the infrared.



Vacuum manifolds and toric manifolds

The nonlinear sigma model case the vacuum manifold is a Hamliltonian
reduction

Yr =

{
(φ1, . . . , φN) ∈ CN

∣∣∣∣∣
N∑

a=1

Qal |φa|2 = rl , l = 1, . . . , k,
∂W

∂φa
= 0

}
/U(1)k .

This manifold is isomorphic to a hypersurface dW = 0 in a toric variety

CN//(C∗)k ,

where the action of (C∗)k is defined by the N × k charge matrix Qal as

φa => λQalφa

.
The classical way to describe a toric variety is a Fan. The vectors va, whose
components are {vai}a≤N,i≤5, form the edges of the Fan.
The vectors va satisfy the linear relations. The integral basis of these relations
can be witten as

∑N
a=1 Qalva = 0.

Then namely these integral numbers Qal are the weights which define the toric
variety CN//(C∗)k .



Supersymmetric localization on S2

In the recent years the partition function of GLSM was computed in a
supersymmetric background on S2 using the Supersymmetric localization
(Benini et al, Doroud et al):

ZS2 =
∑
ml

∫
Cl

∏
l≤k

dσl

2π

Zclass(σ,m)
∏
a≤N

ZΦa(σ,m),

where the classical action is

Zclass =
∏
l

e−4πirlσl−iθlml

and the one-loop determinant of a chiral field Φa is

ZΦa =
Γ(qa/2− i

∑
l(Qalσl −ml/2))

Γ(1− qa/2− i
∑

l(Qalσl + ml/2))
.



Mirror version of JKLMR conjecture

Shortly after this Localization computation has been proposed by Jockers et al
(JKLMR ) a conjecture that

ZS2 (Yr ) = e−Kk (Yr ),

where Kk(Yr ) is the Kähler potential of the special geometry on the Kähler
moduli space of the vacuum manifold Yr .

The Mirror symmetry relates the special geometry on the moduli space of the
Kähler structures Mk(Yr ) and the special geometry on the moduli space of the
complex structures Mc(Xφ) of two different families of Calabi-Yau manifolds Yr

and Xφ through a Mirror map r = r(φ).

We want to verify the Mirror version of the JKLMR conjecture by the direct
computations in the cases where we are able to compute special geometry
using our method.

The Mirror version is the statement that

ZS2 (Yr ) = e−Kc (Xφ)

under a suitable mirror map.



Mirror symmetry and Batyrev polytopes

We use a version of the Batyrev mirror construction for hypersurfaces in the
toric varieties.
The family X of Calabi-Yau varieties defined by the equation (for example the
quintic)

WX (x , φ) =
5∑

i=1

x5
i +

101∑
l=1

φlel(x) =
106∑
a=1

Ca(φ)
5∏

j=1

xvai
i ,

expressed in terms the exponent matrix vai . Vectors va define the lattice points
of the reflexive polytope in R5.

Following Batyrev construction for finding the mirror to X manifold we take
the Fan whose edges are the vectors va with the components vai and construct
the toric variety with this Fan as explained above.
Then hypersurface Y defined by zero locus of a quasihomogenious polynomial
WY inside this toric variety will be the mirror partner to the quintic X in the
projective space.



Construction the Mirror for Quintic

For the quintic the vectors of the fan are

vai =

{
5δa,i , 1 ≤ a ≤ 5,

sa−5,i , 6 ≤ a ≤ 106.

We build a GLSM whose vacuum manifold is a mirror quintic. We easily
reconstruct the charge matrix Qal

Qal =

{
sla, 1 ≤ i ≤ 5,

−5δa−5,l , 6 ≤ a ≤ 106.

such that ∑
a≤106

Qalva = 0.

Elements Qal form a basis in linear relations among va.



Mirror for quintic as a GLSM

To write the superpotential of the GLSM it is convenient to separate the chiral
fields as

Φa =

{
Sa, 1 ≤ i ≤ 5,

Pa−5, 6 ≤ a ≤ 106.

It can be shown that the quasihomogenious polynomial (superpotential) WY is
of the form

WY := P1 G(S1, . . . , S5;P2, . . . ,P101).

Therefore the potential for the scalars whose zeroes define the mirror for the
quintic is

U(φ) =
101∑
l=1

e2
l

2

(
5∑

i=1

sli |Sa|2 − 5|Pl |2 − rl

)2

+
1

4
|G(S1, . . . , S5;P2, . . . ,P101)|2+

+
1

4
|P1|2

5∑
i=1

∣∣∣∣∂G∂Si

∣∣∣∣2 +
1

4
|P1|2

101∑
l=2

∣∣∣∣ ∂G∂Pl

∣∣∣∣2 .



Partition function for the mirror quintic

The partition function of the GLSM in this case is given by a 101-fold contour
integral

ZS2 =
∑
ml∈V

∫
C1

. . .

∫
C101

101∏
l=1

dτl
(2πi)

(
z
−τl+

ml
2

l z̄
−τl−

ml
2

l

)
×

×
Γ
(
1− 5(τ1 − m1

2
)
)

Γ
(
5(τ1 + m1

2
)
) 5∏

i=1

Γ
(∑

l sli (τl −
ml
2

)
)

Γ
(
1−

∑
l sli (τl + ml

2
)
) 101∏

l=2

Γ
(
−5(τl − ml

2
)
)

Γ
(
1 + 5(τl + ml

2
)
) ,

where
zl := e−(2πrl+iθl ),

and summation is over ml such that
∑

a maQai ∈ Z for all i.
To connect with our previous computations we compute the integral at
ra << 0 that is at |za| >> 0. The contours can be deformed to the right
picking up the residues at

5
(
τl −

ml

2

)
− 1 = p1, 5

(
τl −

ml

2

)
= pl ;

p1 = 1, 2, . . . , pl = 0, 1, . . . so that pl + 5ml > 0.



Partition function for the mirror quintic

After computing the residues the partition function reduces to

ZS2 = π−5
∑

p1>0,pl≥0

∑
p̄l∈Σp

∏
l

(−1)pl

pl !p̄l !
z
− pl

5
l z̄

− p̄l
5

l

5∏
i=1

Γ

(
1

5

h∑
l=1

slipl

)
Γ

(
1

5

h∑
l=1

sli p̄l

)
sin

(
π

5

h∑
l=1

sli p̄l

)
,

where the set Σp - is a set of all {p̄l} such that∑
a(p̄a − pa)Qal/5 =

∑
a maQal ∈ Z.

After a rearrangement this formula becomes

ZS2 =
∑
µ

(−1)|µ|
5∏

i=1

Γ
(
µi
5

)
Γ
(
1− µi

5

) |σµ(z)|2,

where

σµ(z) =
∑
ni≥0

5∏
i=1

Γ
(
µi
5

+ ni
)

Γ
(
µi
5

) ∑
p∈Sµ,n

101∏
l=1

(−1)pl z
− pl

5
l

pl !
.



Conclusion

The formula for partition function on S2 coincides with the special geometry on
the moduli space of the quintic itself after a simple mirror map

zl = −φ−5
l .

Thus we constructed an explicit correspondence between a family of Calabi-Yau
manifolds Xφ and the Gauge Linear Sigma Model whose vacuum manifold Yr is
a mirror of Xφ.

The GLSM partition function presentation also gives an useful analytic
continutation of the Special geometry on the complex moduli space Xφ.

Thank you for your attention!


