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1. Introduction: Galileons on a spacetime without Torsion

Horndeski theory:

the most general modification of Einstein’s gravity (GR) with a real
scalar field, with higher derivatives in the action, but with second

order equations of motion [1 - 8]. Rediscovered as Galileons [2].



1. Introduction: Galileons on a spacetime without Torsion

On top of GR, /d"‘x\/—TJR
consider four general functions Ga(¢, X), Gs(¢,X), Ga4(¢,X), G5(¢, X)
with X = —%g“”@ugbﬁy¢ , hotation: G4 x = 0G4/0X , (-,+,+,+).

G. Galileons:

8 — / d4$ \/—_g (GQ — Gg V“V'u¢ -+ G4(¢7X) R + C;'4,)( ((vuvugb)Q o (vuvu¢)2>

+ (G5 part of the action )



1. Introduction: Galileons on a spacetime without Torsion

On top of GR, /d4:v\/—TJR
consider four general functions Ga(¢, X), Gs(¢,X), Ga4(¢,X), G5(¢, X)
with X = —%g””@M¢0y¢ , hotation: G4 x = 0G4/0X , (-,+,+,+).

G. Galileons:

S = / d*z vV —g (Gz — G3V, V') +Gy(0, X) R+ Gy x ((Vuvugb)z N (V“VVQS)Q)

Gsx
0

+2(V,V,6) (V/V°6) V"V ,0) )

+G5 G*"' VYV, YV, (V. V*9)® = 3(V,. V') (V,V,0) V'V*¢




1. Introduction: Galileons on a spacetime without Torsion

Motivation for Horndeski theory/ Galileons:

1. Can violate the Null Energy Condition (NEC) in a possibly stable way [9]
a) What for?

To avoid the singularity theorems of Penrose and Hawking

(->Bounce)

2. (,Non covariant®) Galileons (Galilean invariance) is an IR modification

of gravity inspired by the low energy effective theory of DGP [2].



1. Introduction: Galileons on a spacetime without Torsion

Key aspects of Galileons:

1. There is no Ostrogradsky Ghost

2. Generality: It includes, as special cases, theories ranging from
minimally coupled scalars in GR, to k-essence, Brans-Dicke and

more general non-minimal couplings.



2. Galileons on a spacetime

with Torsion



2. Galileons on a spacetime

with Torsion

- Motivation
- Resolving ambiguities in the definition of Galileons with torsion

- EXxplicit torsion in the second order formalism. The Action.

Why is this Action interesting?



2. Galileons on a spacetime with Torsion.

Motivation to introduce Torsion in Galileons:
1. In the torsionless theory, there is already a NO-GO theorem that holds for

generic models (there are some special cases):

even if away from the physically relevant phase, there are gradient

Instabilities in nonsingular models at some time in the evolution
[10-17].

-> can a more general spacetime with torsion cure this issue?

Answer so far: partially (there are other issues).



2. Galileons on a spacetime with Torsion.

Motivation to introduce Torsion in Galileons:

General motivations:

2. lorsion has also been studied in relation to nonsingular
cosmologies (before Horndeski) [18].

3. Torsion is on the way to introduce spinors [18].

4. Torsion is suggested by demanding local Poincareé invariance [18].



2. Galileons on a spacetime with Torsion:

- Resolving ambiguities in the definition of Galileons with torsion

Recall Torsionless G4: S, = / A2 v/=g (Gs(6, X) R+ Gax ((VuV"0)" = (V,V0)’) )

Here, the metric compatible derivative V,g,, =0 on a vectorV, is

|4 |4 174 1 O
V.VV=0,VV + T, V", Ll = 59" (Ougve + 0vGuo = Ooguv)

suchthat I, =17, and [V.,V,]¢=0.

-> [here Is no ambiguity In G4 x (VMVM)Q




2. Galileons on a spacetime with Torsion.

- Resolving ambiguities in the definition of Galileons with torsion

To go to Torsionful G4 take V — V, but then, what is (V,V,¢)? ?

Here, the metric compatible derivative V,g,, =0 on a vector is

SO,

~ ~~

V., V.,

- | 74 | 74 v A =y, 1/
vV,V' =0,V ‘I_FW\V ’ S #FM

¢ # 0 -> there are two possible contractions with the metric

for G4 x (V,.V.$)? , namely

Gux ((9:976)" + ¢ (9,9.0) 997 + 5 (9,7,0) 994, es= 1



2. Galileons on a spacetime with Torsion.

- Quartic Galileons with Torsion

The action takes the form

Sie= [ dtov=g (o 0OR+ Gux ((9.50)" - (,9,0) 9970 - ¢ (9,9,0)

c parameterises a family of theories with different dynamics.

R




2. Galileons on a spacetime with Torsion.
- Explicit Torsion

We introduce torsion in the metric (second order) formalism:

- - 1
TIOHJV — F,lpw - Fgu ) Kplu/ — 2 (TVPM T TMPV T TPLW) )
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2. Galileons on a spacetime with Torsion.
- Explicit Torsion
- Assume: connection is not an independent field:
Ffw — FZV — K?
With the torsionful derivative
V, VY =V, VY — KY VA

The theory

Sie = [ dtoy=g (Ga(6, R+ Gux ((9,570) = (9.9,0) 996 — ¢ (3,7.0) [2.9]0) ).

can be written as follows:



2. Galileons on a spacetime with Torsion.

- The Action with explicit Torsion
We consider a set of 3 independent fields: metric, scalar and contortion
Sic= [ @5 (a6, R+ Gux ((,579)" ~ (9,9,0) 74579
+ (1= ©)Gax Koo (K = KM V36V79)

~

with R=R+K,,, K"? + K*,YK,?,+ 2V, K" "

e = / d%ov/=9 (G4(R + Ky K7 + K9, "KL P, + 2V, KP ) + Gax (Vo V79 + KPVVVpCb)z
— Gax(K?5uV ¢+ VoV ,u0) (K*HV, 6 + VIVE Q)
+ (1= )Gux Ko (K = KM2) V26V79) .



2. Galileons on a spacetime with Torsion.

Why is this Action interesting?

There is an apparent kinetic mixing with Torsion

(In contrast to Einstein-Cartan)

Some questions arise:
1. Are there more Degrees of Freedom?
2. Scalars: A new chance to stable solutions?

(Recall the No-Go in Torsionless Galileons)



2. Galileons on a spacetime with Torsion.

Why is this Action interesting?
There Is an apparent kinetic mixing with Torsion...

- Look closely at the terms

G, VK Gix (Vo) (VVe) K
INn the action
Sy, = / d*z /=g (G4(R + KW KM + KF YK,P, + 2V, K* V) + Gux (VL. VY ¢+ KP VY ,¢)°
— Gux (K?, V0 +V,V,0)(K"HV 0 + VIVEQ)
-+ (1 — C)G4,XKI//,LO' (KV“)‘ — ij}‘) V)\¢VU¢> :



2. Galileons on a spacetime with Torsion.

Why is this Action interesting?
There Is an apparent kinetic mixing with Torsion...
- Look closely at the terms
G, VK Gs,x (Vo) (VV) K
(Recall Gy4(¢,X) , X = —59"70,00,9 ).
Hence the field equations look like
Es(V2K, V2, 8%9) =0, &,,,(V3p,0%9) =0, Exu,, (Vi) =0,

e.g.
Es = 2Gax P (@,\ VKV — NV, VY K! o\ + YV, mKW,\) + F(K, VK: V%0, Vo, R)



3. Torsionful Galileons about the FLRW

pbackground



3. Torsionful Galileons about the FLRW

pbackground

Consider the following questions at linear order about a spatially
flat FLRW background

1. Are there more Degrees of Freedom?
2. Scalars: A new chance to stable solutions?

(Recall the No-Go in Torsionless Galileons)



3. Torsionful Galileons about the FLRW background

- Linearization: the perturbed metric

ds® = (nu, + 0g,,) dz* dz”
Spatially flat FLRW background in conformal time

N dzt dz¥ = a*(n) (—dn2 + §;; da’ da:j)
4 scalars, 2 (2-component) vectors and a (2-component) tensor

perturbation (graviton)
09, dzt da” =a”(n) (—2 adn”
+2(0;B+ S;)dnda" + (=21 d;,
+ 20,0, E + 0;F; + 0;F; + 2 hy;) da* da?)



3. Torsionful Galileons about the FLRW background

- Linearization:

The perturbed Horndeski scalar: ¢ = ¢(n) + 11
(In the context of linearized expressions we will also denote with ¢ the background)

The perturbed contortion tensor:  K,.o = "K,.o + 0K,0

- For the background contortion: with K,,, = —K,.,, on an isotropic

and homogeneous spacetime



3. Torsionful Galileons about the FLRW background

- Linearization: structure of the background equations

- We can solve for H, ¢(n) and

Cog, . = —26€5k Gy y/a® = 0 y(n) = 0

a*G. 8HX Gy x + ad(Gs —2Gqy))
4




3. Torsionful Galileons about the FLRW background

- Linearization:

- For the perturbation of contortion: with K,,, = - K, ,

24 iIndependent components

8 scalars,

scalar __ 9 (1)
1
OK50 = 0;0,C 4 0;;CY + €;,0,C"
scalar __ _ = 9 )

0 scalar — (5238,% — 5/.@8@) C(G) + eiklé)l(‘)jC(” + (Eijlalﬁk — ekﬂé)lé)i) C<8)

ijk



3. Torsionful Galileons about the FLRW background

- Linearization:

6 (2-component) vectors
5 K;/Oeé:tor _ V-(l)

1

5Kyector _ ai‘/j@) i aj ‘/;(3)

170

vector (4) (4)

1

5 vector __ 5@,3, Vlf) - 5kj ‘/;(5) 4 8j8ivk(6) L 6)jakv;(6)

ijk
and 2 (2-component) tensors
tensor ___ (1)
5Kijo — Tz’j

tensor __ o (2) (2)



3. Torsionful Galileons about the FLRW background

Answer to 1st question at linear order about a spatially flat FLRW

background

1. Are there more Degrees of Freedom?

Answer: No.

The seeming kinetic terms conspire to cancel out.

Symmetry? Accidental symmetry?

2. Scalar: A new chance to stable solutions?



3. Torsionful Galileons about the FLRW background

- Quadratic Action: s, = STensor 4 gocalar

1 ' 1 ‘ ] 1
STensor _ 5 / d77 d3$ (Ul (hij)2 + V9 (akhw)z + V3 (Ti(j))Z -+ V4 (8ka,;(;'))2 + Vs hij T,L(Jl) + Vg hij T’i(j) =+ U?(hij)z)

o~ 2 XGux
*J Ga+ 2X Gy x

ilz'j — 2£Iih7;j T(Q) — O

34| 1 1\’ 2\
ST:f d??d X d 5 2 gT (hZ]) _fT(a)kh@J)

o, G ;
! Gys+ 2XGyx C?] = Fr/G-< 1 X = 2¢a2
FT:2G47




3. Torsionful Galileons about the FLRW background

- Quadratic Action: S, = STensor 4 gocalar

Scalar
S —



3. Torsionful Galileons about the FLRW background

- Quadratic Action: S, = STensor 4 gocalar

caltar 1
S5eal 5 / dnd’z (c (fr :BO;CY + fs51 (; B)° + f52 (0;C")?)

+ (f1 all + fo CYY + faay + fu Iy + f5 COVI + fo C¥a + fs 0;CY O;E

+ fo 0;B0;CY + fi9 0,C7 0,CY + f11 0;C"Y 0,C” + fi12 0;B0;C" + f13 0,C" 0;C"

fia O;BOIL + fi5 O;E 011 + fi6 0;C"Y 011 + f17 0;CY O;11 + fi18 0;CY 11 + f19 0;C" O;11
fog O; BO;ox + fo1 O;E O;a0 + fon 0;C% 0;a0 4+ foz 0;C"Y 0,0 + foy O;a O;11 + fo5 O; F O;1)
+ f26 0; B Ojp + f27 0;C" 0 + fog 5H8z¢ + fo9 0;x 0;0 + f30 0;0,C'"" 0;0;C"™ + f31 P11

f32051;1+.f33 H+f3404¢-|-f35 ¢ f36H¢+f376’C 8E+f388a6‘E
f39 8’LB8@H =+ f40 82E87,H -+ f41 820 821_[ f42 81C 67,1_[ - f43 8ZE8’LH - f44 87,B 8zw

fa5 0;C" 37;¢ + fae @Eaﬂb + far (C)? + fag @ + fag ¥° + f50 [I° + f53 (0;C")?
+ fs4 (0;C9)2 + fs5 (I1)? + fs6 (0i00)? + f57 (0;0,C%) + fss 112 + fsg IDQ)) :




3. Torsionful Galileons about the FLRW background

- Final Quadratic Action:

1 N A ] 1 , 2 5 1 : 1 , , -
Sy, = —/dnd ra® |— (G- (hz-]) — Fr(Ophij)” ) + — | ¥ QSI—CCL—293115'i5’¢ Y — Fs(0i))

2 a a

The no-ghost, stability and subluminality conditions

8CG4,X3 G43
(G4 +cXGyx)(GaxGap—G1Gapx)

G- >0, F,>0,Fs>0,Gs>0 cUsir = 5 > 0

- One tensor perturbation
- No dynamical vector perturbation
- One scalar perturbation

- Theory with ¢c=0 Is special



3. Torsionful Galileons about the FLRW background

Table 1. Classification of the scalar according to the parameter ¢ of the theory.

Scalar mode

c <0 c =0 D<cec<?2 c > 2
Non wave-like Non wave-like
dispersion relation. dispersion relation.
Not a ghost Wave-like A ghost Non wave-like

(in high momentum)
if the graviton
is healthy™.

dispersion relation.

(in high momentum)
if the graviton
is healthy™.

dispersion relation.

Graviton

The no ghost, stability and subluminality conditions (G, > 0, F,. > 0

Is massless.

are satisfied it
Gy > —QXG4’X > () .

et <)

Vector sector

Non dynamical.




4. Stabillity:

the NO-GO in the Torsionful theory (c=0)



4. Stability

Answer to 2nd question at linear order about a spatially flat FLRW

background
1. Are there more Degrees of Freedom?

Answer: No.

2. Scalar: A new chance to stable solutions?
Answer: Partially for c=0
Now the NO-GO on the Torsionful theory holds on different

assumptions



4. Stability

Details for theory with ¢=0
S = / d4x\/—g (GQ —Ggﬁuﬁ“gb + G4R

+Gox ((9.9%0) - (9,9.0) 9979

Scalar sector very similar to torsionless Galileons, Except |G, # T

_ 3, 4 Gr io
SS—/dnd T a (—3a—2¢
Fr ©,

2
gT:2G4—|—2G)?G4X7 FT:2G4, T:FT(CE_Q)
T :

| 5 (8z¢)2+6—a¢ —|—2—287;C¥87;¢'
¢ . ¢ 4G26 2G3 o
+28if§B (00— G, ¢) + mﬂ) O=2F, =35




4. Stability

How do we get |G, # T in the torsionful Galileons?

Answer: a nontrivial torsion scalar coupled to the dynamical scalar

mode

2&2XG4X -
C¥ = ’ :
Gy + 2XG4,Xw+ e

a’ (2G4 H + ©) +a? ¢ Gy 4
Q
2Gy




4. Stability

Using the equation for B, a = 1 G w the action reads,

Ss = / dnd°z a* ( Gs Y* — —]:s( W)Q)

a2

with 92 1 d T
Gs =3Ur vJ:S:azdn(ag@ )_]:T
Follow a similar reasoning as In (Rubakov, 2016) IN relation to wormholes,

or as initially proved for a subclass of generalized Galileons in (Libanov,

Mironov and Rubakov, 2016) and then extended to the full Horndeski action in
(Kobayashi, 2016)...



4. Stability: the NO-GO in the Torsionful theory (c=0)

No-Go for nonsingular, all-time stable and sub/ luminal solutions

For (up to quartic) Galileons on a spacetime with torsion the following

assumptions for a first order perturbative expansion about FLRW are

mutually inconsistent:

) Nonsingular cosmology: namely, there is a lower bound on the
scale factor a(n) > by > 0.

Il) The graviton and the scalar mode are not ghosts and they suffer
no gradient instabilities: G- > 0,F; >0,Fs > 0,Gs > 0.

) ...



4. Stability: the NO-GO in the Torsionfu

| theory (c=0)

No-Go for nonsingular, all-time stable and sub/ luminal solutions

Il) The graviton is always sub/ luminal: (cg)? <1

IV) There is a lower bound F-(n) >bs >0 as 1) — =

gravity" at linear order (Ageeva, Petrov and Rubakov, 2021)).

—O (no ,Strong

V) © Vanishes at most a finite amount of times (1o cover generic

theories not defined by the equation ©® = () (Mironov

2023))

and Shtennikova,



4. Stabillity:

The argument in Galileons f . — a12 (i? ag@T T) — JF-
With Torsion / without Torsion
T = F:(c; —2) T =G-
With Torsion: (I)-(lll) imply
aG. F.(c? —2
Vo TG,

Because O is a regular function of Hand ¢



4. Stabillity:

fS _1d (agé-T) _fT

_a2d77

Now integrate g > (
AN:N]” _Nz > I(nzv 77f)7
¢

1(77@777f):/ dnazf’r)
7]

7

with Nrand /V; the values of N at some (conformal) times 7] f and 7;

respectively



4. Stability

A a*F. > 0

I(n;) = I(ni, ny)|n, positive, growing with 7/i

I(nf) — I(m, 77]:) positive, growing with 7]

ur:

B) AN > ()

C) I(m;) notconvergentas 7); — —OOC
I(n¢) notconvergentas 7)f —» OC



4. Stability

Now, take
—o00 < N; <0
Since 7& () , follows

Ng(ng) <0

and

N;|> AN = Ni—Nf

so, there exist 7] such that

if nf = Te; I(Uf) > |Nz|> AN




4. Stability

Similarly, take
o0 > Nf > ()
Since 7& () , follows
N;i(n;) >0
and
Nf > AN = Nf — N,

so, there exist 7] such that

if n, <ne, I(n;) > N¢ >AN




4. Stability

Namely,

And

Fs *0

No-Go for nonsingular, all-time stable and sub/ luminal

solutions



4. Stability: example

A model with an all-time stable non singular
cosmology with a short period of superluminality of the

graviton



4. Stability: example

By-pass the no-go? short-lived superluminality

Cqg 2> V2 ¢

- Ts @ width of the superluminal phase
- Tp : width of the bounce phase
- 7ls : center of superluminal phase

- Tlb : center of bounce phase



4. Stability: reconstruct S

Out of G2, G3, G4 reconstruct a Lagrangian for the fixed solutions

(Inverse method, see also [19])

a=(+n?)i, H=5% = "1+ ¢=n,

Thus, In linearized expressions

9’
X_2a2

X =1/2(r +n?)2)



4. Stability: example

Demand GR asymptotics as 1) — 0O

G2(¢7X) — 222 527 G4(¢7X) — %7 M?

¢ IS some invertible function of the Horndeski scalar.

And we assume Ne < Mp = 0



4. Stability: example

The following Ansatz for the model has enough structure

Gao(d,X) = ga0(9P) + 921(¢) X + ga2(p) X7,

Gs3(¢,X) = g3o0(@) + g31(¢) X,

1

Ga(p, X) = 5 ga0(@) + ga1(9) X .



4. Stability: example

Indeed, 920, 921, 922, 430, 31, 940 and g41 can be solved

algebraically from the following 7 equations
FT(9407 941) — 17

2
T(ga0, ga1) = —1 — 3Sech (77 "8) + 3 Sech (77 ns)

S S

G3(9307 931) — SeCh (T_b> FS > O
©(g30, g31) = —H g
Us = fs s = L

. 2(2(1—=8)+728 + (n—nsS)2)3

goo

Egay = 0 S = Sech (TS (7~ 778)) "= _H
Th T)s

= (




4. Stability: example

2
Superluminality ' Cg
" ﬂ ..... - CS2 — 1
! Sub|lj|mina| .......... (1/2) * x(n)
Bounce
\l m‘ o @ e 80xH
-50 -10 0 10 50

FIG. 1: Hubble parameter for a bounce at n, = 0 with
7, = 10. Speed of sound for the scalar mode c2. Speed
of the graviton 03 with short superluminality phase
(s << 7p) happening at n, = —10 before the bounce
(For convenience displaying the graphs we choose here
T, = 1075). The graviton quickly becomes subluminal
around 7, and approaches luminality from below in the
past, and during the bounce phase and future. Torsion
background x(7) exponentially vanishing in the
asymptotic past and future.

Gg->0,F->0,Fs>0,Gs >0



4. Stability: example

FIG. 2: By-passing the no-go theorem: this choice for T
(ED does not satisty the all-time negativity condition,
which critically means that the graviton is superluminal
during a brietf stage of evolution, around ns = —10 as
shown in Figure 1, and that the function N in equation
@D vanishes. Hence, the no-go theorem does not hold
and we can build all-time stable solutions.

(7, =10, 75 = 1, n, = 0, ns = —10)



4. Stability: example

The solutions for the Lagrangian functions take the following form

as 1 — OO

5 (77—"'78)
a0 = —Gg41 X = g€

e
Ny
Va)

\]
W
S

|
3

W
|
|

| |
| |




4. Stability: example

Plot of the analytical solutions for 920, 921, 922, 930, 931, 940 and g1

100 2*102*g20 /\
.......... 10*g21
50 - g22 J
,\_ l,\\ ......................
O TP NN N TN s _." v ,-.T' DRGSR S e e e e —r———— — 77
; \LI {\/
-50 E V
-20 -10 0

FIG. 3: Everywhere regular Lagrangian functions
920, g21 and goa.



4. Stability: example

Plot of the analytical solutions for 920, 921, 922, 930, 931, 940 and g1

90

10 |
o0 1

 : -3} v
-50 f 2

-éo —%O O 110 -éo —;O 0
(a) g30 and g31. (b) J40 and Jdai.

FIG. 4: Everywhere regular Lagrangian functions.



4. Stability: example

Asymptotic Lagrangian

|
&
N\
-
=
I
I
K
)
ek
=
>
_|_
Q
)
)
=
>
\V)

GZ(¢7X)
G3(¢7X)
The leading expressions in the Ansatz ¢, (s x) = = + g.0(6) + g11(6) X .

|
N
3
O
N
-
N’

|

|
N
)
p—d
N
-
N

as N — OO
2

T — 9 —9
Are Gy==2 , goo=—% ()", gn X =3 (£n)

3

Now, with the leading solutions ¢ = nz, H = n2,p=n, X =1/2n)

The corresponding action to S in the asymptotic past and future is
1
g _ /d4:1;\/—g (R —0,&0"¢)

; ¢ = /3m()

Indeed, the leading solutions satisfy ¢ +2a HE =0, €2 —6a2 H? = (




Conclusions

- Classification of the scalar according to the parameter ¢ of the theory.

- We extended the no-go argument of (Rubakov, 2016) (Libanov, Mironov and Rubakoy,
2016) (Kobayashi, 2016) to up to quartic Galileons (c=0) on a spacetime with torsion

(Horndeski-Cartan)

- In generic models it is not possible to obtain a nonsingular FLRW
cosmology that is always free of gradient instabilities against the scalar

perturbation and an eternally sub/ luminal graviton.



Conclusions

- A spacetime with torsion can support all-time linearly stable nonsingular solutions in Galileons

If there exists at an arbitrary time a superluminal phase for the graviton and by at least an

amount Cq > \/TC

- This unphysical phase can formally happen as a deep UV inconsistency (arbitrarily short) and
unrelated to the physically relevant length scales that are pertinent to these models, such as

time and much longer width of a bounce.

- At least in what concerns the stability and speed of solutions, this shows that Horndeski-
Cartan theory is fundamentally different to Horndeski on a torsionless geometry, in contrast to

e.g. the equivalence of Einstein-Cartan.



Open questions:

- Accidental symmetry [20 - 23]7

- Lorentz invariant UV completions for models with all-time stable nonsingular

cosmologies (Adams et.al. , 2006), (Dubovsky et.al. , 2006)?

- G5 changes the picture?
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Additional Material

Non wave like dispersion relation
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Additional Material

Classification of the scalar for nonzero c

In high momentum

8 CG4,X3 G43
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cGsir = 5 >0 Fs >0

From tensor sector G, > 0, F; >0, and sub/ luminality ¢, > 2XG, x >0

X=55¢">0 Gy >0, Ggx <0,
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Additional Material

Background equations ¢,=0, &,, =0,

3G4(a}—ac’z) 3G4,¢@ | 6G4’X(2$—|—CL&)@2

Egrs =0, Ex

=0,

ij0

S

I
a8 6 10

c _ 5 2Gax Guep  2Gyx(r+ aa
Kijo ] a6 a4 |
2a° [ . a I6x
gCP: SbQ 8900+(58900+3ggii)5 | C,bQ



Additional Material

Gauge transformations
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Additional Material

Coefficients in scalar sector (c=0)
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