Multiparticle production in $\lambda \phi^4$ theory: method of singular solutions and numerical results

based on <u>2212.03268</u> [hep-ph]

S.V. Demidov, B.R. Farkhtdinov^{1,2}, D.G. Levkov

¹Institute for Nuclear Research of the Russian Academy of Sciences

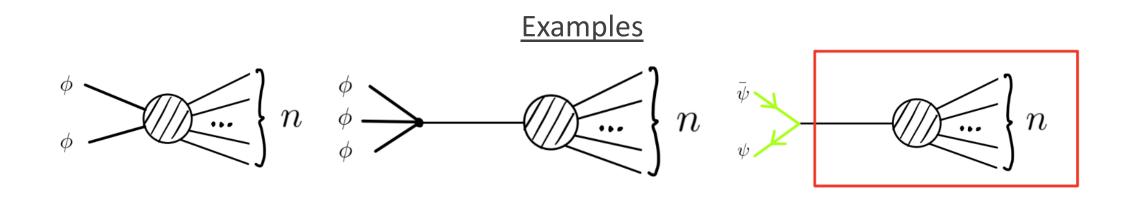
²Moscow Institute of Physics and Technology

Motivation

- Multiparticle probabilities
- Perturbation theory

Multiparticle processes

Processes with $n\gg 1$ bosons in the final state and $n_i\ll n$ in the initial

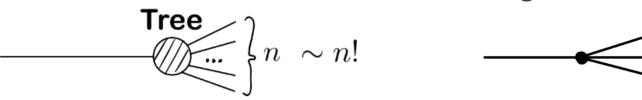


Growing number of diagrams

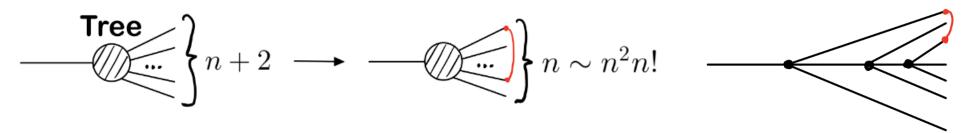
In theory
$$S[\phi] = \frac{1}{2} \int d^4x (-\phi \Box \phi - m^2 \phi^2 - \lambda \phi^4 / 2)$$

$$A_{1\rightarrow n} = \langle n, E = nm | \hat{\phi}(0) | 0 \rangle$$

The number of tree diagrams



The number of one-loop diagrams



Tree-level and one-loop

Tree – level amplitudes are [Brown, 1992]

$$A_{1 o n}^{tree} = n! \left(\frac{\lambda}{8m^2} \right)^{\frac{n-1}{2}}$$

Indeed grows factorially

One-loop correction [Voloshin, 1992]

$$A_{1\to n}^{1-loop} = A_{1\to n}^{tree} B\lambda(n^2 + O(n))$$

$$B = const$$

Indeed has $n! n^2$

Failure of perturbation theory

Perturbative series for $A_{1\rightarrow n}$ [Argyres, 1993]

$$A_{1\to n} = n! \left(\frac{\lambda}{8m^2}\right)^{\frac{n-1}{2}} \left[1 + \#\lambda(n^2 + \dots) + \#\lambda^2(n^4 + \dots) + \dots\right]$$

At L loops leading contribution $\propto n! (\lambda n^2)^L$

Blow up at $n \gtrsim \lambda^{-1}$

Series resummation

Resummation of leading contributions at large n gives

$$A_{1\rightarrow n}^{resummed} = A_{1\rightarrow n}^{tree} \exp(B\lambda n^2)(...)$$

B is the same as in the one-loop $\propto n^2$ term[Libanov et al., 1994]

Using Stirling formula

$$\left[A_{1\to n}^{tree} \sim \exp(n\ln \lambda^{1/2}n - n)\right]$$

Then

$$A_{1\rightarrow n}^{resummed} \sim \exp(F_A/\lambda)$$

Exponential form

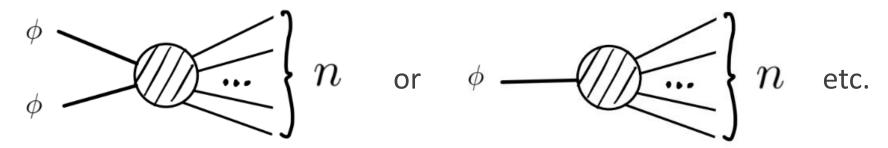
Semiclassical treatment

The exponent

Conjectures [Libanov et al., 1994]

- 1. $A_{few \to n} \sim e^{F_A(\lambda n)/\lambda}$, $n \gg 1$, $\lambda n = const. F_A(\lambda n)$ "holy grail" function
- 2. $F_A(\lambda n)$ do not depend on the initial state if $n \gg n_i$

Semiclassical limit: $\lambda \rightarrow 0$, $\lambda n = const$



"Higgsplosion"

It was suggested [Khoze, 2017] that at high energies

Probability also has exponential form $\propto e^{F_{Higgsplosion}/\lambda}$

$$\left\{F_{Higgsplosion} = \lambda n \ln \left(\frac{\lambda n}{4}\right) + \frac{3}{2}\lambda n \ln \frac{\varepsilon}{3\pi m} + \frac{\lambda n}{2} + 0.845(\lambda n)^{3/2}, \quad n \le n_*, E = n(m + \varepsilon)\right\}$$

 $F_{Higasplosion} = 0$ at n_* and grows for $n > n_*$ (unitarity?)

Result was obtained semiclassically with additional assumptions

Consistency check?

Method of singular solutions

- Formulation
- Numerical implementation

[Son, 1995]

Landau method in QM

In QM one can consider

$$\int \langle E' | \, \hat{O} \, | E
angle \sim e^f, \quad f = \, - \mathrm{Im} \left[\int \left[2m \left(E' - V
ight)
ight]^{1/2} dx - \int \left[2m \left(E - V
ight)
ight]^{1/2} dx
ight] \, .$$

- • \hat{O} can be \hat{x} , \hat{x}^2 , \hat{p} , etc. answer is insensible
- • x_* is a singular point of $V \Rightarrow$ singular solutions in path integral
 - We need only exponential accuracy

Parametrization

•In (3 + 1) we consider theory

$$S[\phi] = \frac{1}{2\lambda} \int d^4x (-\phi \Box \phi - m^2 \phi^2 - \phi^4/2)$$

- •At $\lambda \to 0$ action becomes large \Rightarrow semiclassical description
- •Consider processes $n_i \to n$ with $n \gg 1$ and $n \gg n_i$
- • $n \propto \lambda^{-1} \Rightarrow E = n(m + \varepsilon) \propto \lambda^{-1}$

Probability

Our aim is

$$P_n(E) \equiv \sum_f \left| \langle f; E, n | \hat{S} \hat{O} | 0 \rangle \right|^2 = \int D[f, \phi] e^{W/\lambda} \sim e^{F(\lambda n, \varepsilon)/\lambda},$$

where

$$\varepsilon = E/n - m$$

 $|\hat{O}|0\rangle$ — initial state with $n_i \ll n$ particles

Initial state

$$\hat{O}_{J}|0\rangle = \exp\left(-\frac{1}{\lambda}\int d^{3}\mathbf{x}J(\mathbf{x})\hat{\phi}(0,\mathbf{x})\right)|0\rangle$$

- 1. Creates $n_J \propto J^2/\lambda$ particles
- 2. $n_J \ll \lambda^{-1} \text{ or } J \to 0 \Rightarrow \text{universality}$
 - 3. At $1 \ll n_J \ll \lambda^{-1}$ we can
 - Calculate semiclasically
 - Use universality

$$t = 0$$

$$J \bigotimes - c$$

$$J \bigotimes - c$$

$$J \bigotimes - c$$

Probability as a path integral

We compute

$$P_n^J(E) \equiv \sum_f |\langle f; E, n | \hat{S} \hat{O}_J | 0 \rangle|^2 = \int D[f, \phi] e^{W_J/\lambda},$$

Landau conjecture: $P_n(E) = \lim_{J \to 0} P_n^J(E)$

In the path integral representation

$$P_{n}^{J}(E) = \int \mathbf{D}f |A_{J}|^{2} \qquad A_{J} = \int \mathbf{D}\phi_{i,j} \langle f; E, n | \phi_{f} \rangle \langle \phi_{f} | \hat{S}\hat{O}_{J} | \phi_{i} \rangle \langle \phi_{i} | 0 \rangle$$

$$e^{B_{f}(\phi_{f}, E, n)} \langle e^{B_{f}(\phi_{i})} \rangle$$

Saddle point

Use saddle-point approximation at $\lambda \to 0$

$$\frac{\delta W_J}{\delta \phi_{\rm cl}} = 0$$

$$P_n^J(E) \sim e^{F_J(\lambda n, \, \varepsilon)/\lambda}$$

$$F_J(\lambda n, \varepsilon) = W_J[\phi_{\rm cl}]$$

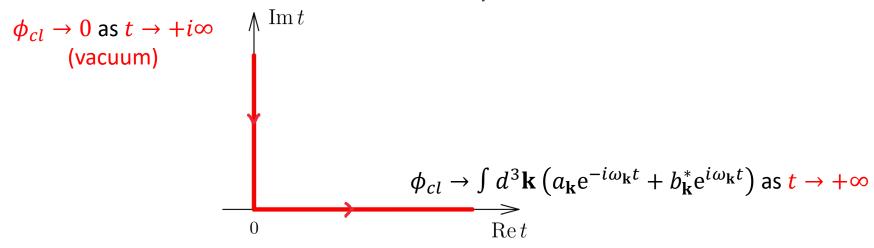
 $\phi_{\rm cl}$ obeys

$$\Box \phi_{cl}(x) + m^2 \phi_{cl}(x) + \phi_{cl}^3(x) = iJ(\mathbf{x})\delta(t)$$

We consider only spherically-symmetrical $\phi_{
m cl}$

Boundary conditions

Solution is calculated on the complex time contour



$$a_{\mathbf{k}} = e^{-\theta + 2T\omega_{\mathbf{k}}} b_{\mathbf{k}}$$

 T, θ — Lagrange multipliers (E, n fixing)

$Limit J \rightarrow 0$

After ϕ_{cl} was found, we calculate

$$\left[F_J = 2\lambda ET - \lambda n\theta - 2\lambda \text{Im}S[\phi_{cl}] - 2\text{Re}\int d^3\mathbf{x} J(\mathbf{x})\phi_{cl}(0,\mathbf{x})\right]$$

Then perform the limit

$$F(\lambda n, \varepsilon) = \lim_{J \to 0} F_J(\lambda n, \varepsilon)$$

Solutions become singular in the limit

• $E_i = 0$, $E_f = E \Rightarrow$ discontinuity:

• $iJ(\mathbf{x})\delta(t) \Rightarrow$ energy change at t=0

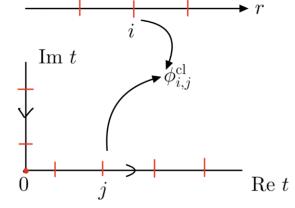
• $J = 0 \Rightarrow$ energy conservation conflicts with BC

Numerical implementation

To solve the saddle-point boundary value problem numerically we

•Use
$$J(\mathbf{x}) = j_0 e^{-\mathbf{x}^2/2\sigma^2}$$

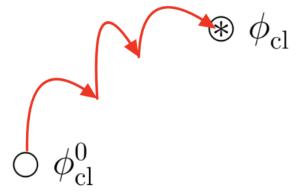
•Discretize:



•Solve $2 \times N_r \times N_t + 2$ real non-linear equations

Solving the equations

•We used Newton-Raphson method



•Solution with required parameters is obtained by walking in the parameter space

$$egin{aligned} & \phi_{
m cl} \left(\lambda n, arepsilon, j_0, \sigma
ight) \ & \phi_{
m cl} \left(\lambda n', arepsilon', j_0', \sigma'
ight) \end{aligned}$$

Need ϕ_0 to start procedure

Source-dominated ϕ_{cl}^0

When $\lambda n \ll 1$; σ , $\lambda E = const$ and $\lambda n \propto j_0^2$

only source produces particles

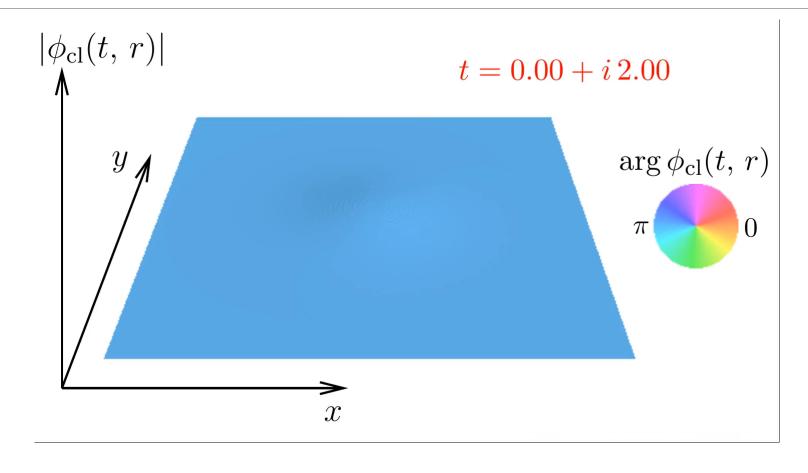
Can be analytically solved!

We use the solution as $\phi_{cl}^{\,0}$

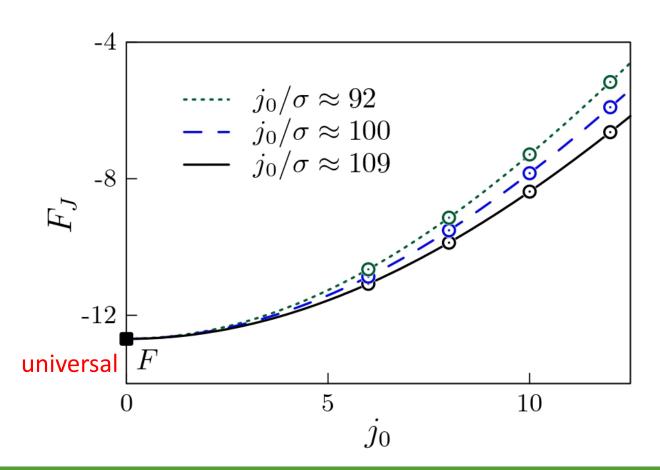
Numerical data

- Suppression exponent and amplitudes
- Limit $\lambda n \gg 1$
- Limit $\varepsilon \gg m$

Example of a solution



Extrapolation $J \rightarrow 0$



- Use $J(\mathbf{x}) = j_0 e^{-\mathbf{x}^2/2\sigma^2}$
- Consider $j_0 \rightarrow 0$, $j_0/\sigma = const$ weak narrow source
- Use $F_J = F + F_2 j_0^2 + F_4 j_0^4 + \cdots$
- Compute $j_0 \to 0$ with different j_0/σ

F at $\lambda n \ll 1$

Reminder: $P_n(E) \sim e^{F/\lambda}$

When $n \ll \lambda^{-1}$ (tree-level)

$$F(\lambda n, \varepsilon) = \lambda n \ln \left(\frac{\lambda n}{16} \right) - \lambda n + \lambda n f(\varepsilon) + O(\lambda n)^2$$

- •For $\varepsilon \ll m$ function $f(\varepsilon)$ is known up to $O(\varepsilon^2)$
- •For larger ε it can be evaluated numerically [Bezrukov, 1998]

F at $\lambda n \gg 1$

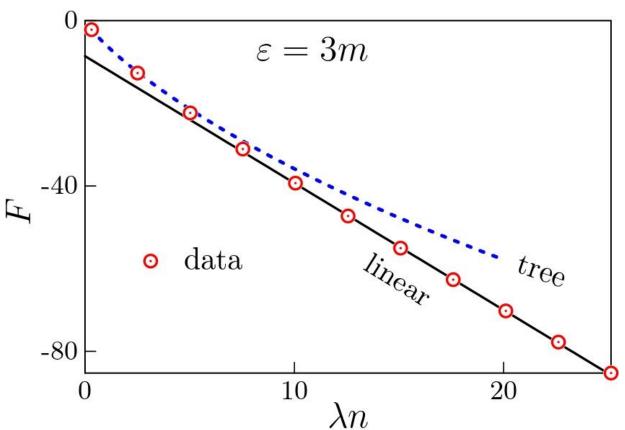
In the limit $n \gg \lambda^{-1}$

1.
$$F(\lambda n, \varepsilon) \xrightarrow[\lambda n \to +\infty]{} f_{\infty}(\varepsilon) \lambda n + g_{\infty}(\varepsilon)$$

2. $f_{\infty}, g_{\infty} < 0$ for all ε

$$P_n(E) \sim e^{f_{\infty}(\varepsilon)n + g_{\infty}(\varepsilon)/\lambda}$$

Example of typical behavior



• Tree:

$$F = \lambda n \ln \left(\frac{\lambda n}{16} \right) - \lambda n + \lambda n f(\varepsilon) + O(\lambda n)^{2}$$

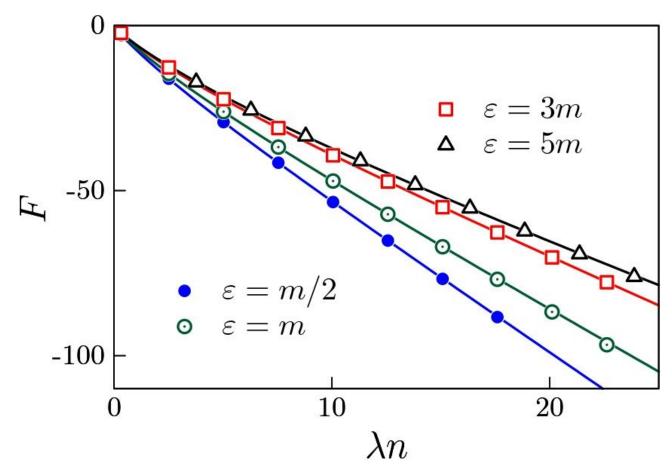
• Linear:

$$F = f_{\infty}(\varepsilon)\lambda n + g_{\infty}(\varepsilon)$$

•
$$\varepsilon = \frac{E}{n} - m$$

•
$$P_n(E) \sim e^{F/2}$$

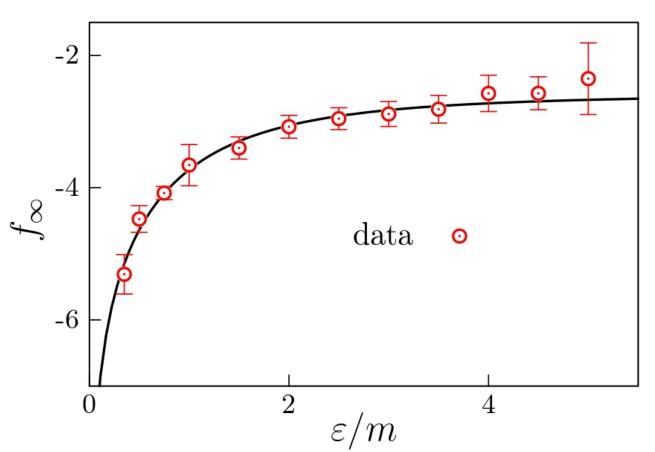
Numerical suppression exponents



•
$$\varepsilon = \frac{E}{n} - m$$

• F become closer, when ε grows

f_{∞} as a function of ε



- $F \to f_{\infty}(\varepsilon)\lambda n + g_{\infty}(\varepsilon)$ for $\lambda n \gg 1$ f_{∞} grows to -2.57 ± 0.06 for $\varepsilon \to \infty$

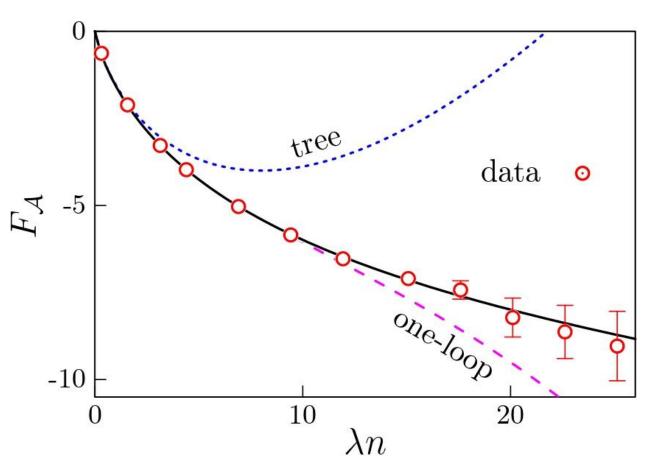
Amplitudes at threshold ($\varepsilon \to 0$)

In the limit $\varepsilon \to 0$ one can estimate

$$P_n(E \to mn) \approx |A_n|^2 \times \text{phase volume} \approx e^{F(\lambda n, \varepsilon \le m)}$$

Can get $|A_n| = \exp(F_A/\lambda)$ from $F(\lambda n, \varepsilon \le m)$ via extrapolation $\varepsilon \to 0$

Fitting of $F_A(\lambda n)$



•
$$F_A = \frac{\lambda}{2} \lim_{E \to nm} \ln \frac{P_n(E)m^{4-2n}}{\text{phase vol.}}$$

$$F_A^{\text{tree}} = \frac{\lambda n}{2} \ln \left(\frac{\lambda n}{8} \right) - \frac{\lambda n}{2}$$

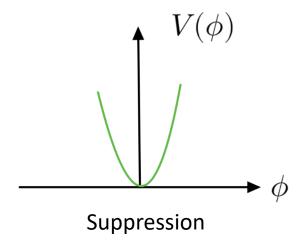
One-loop:

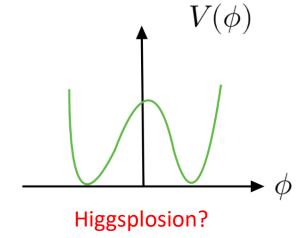
$$F_A^{1-\text{loop}} = F_A^{\text{tree}} + \frac{(\lambda n)^2 3^{3/2}}{32\pi^2} \ln(2 + \sqrt{3})$$

Conclusions

We calculated "holy grail" function $F(\lambda n, \varepsilon)$ $P_n(E) \xrightarrow[\lambda n \to +\infty]{} e^{nf_\infty + g_\infty/\lambda}$

Generic?





Thank you!