Bootstrapping the AdS Virasoro-Shapiro amplitude

Tobias Hansen, University of Oxford

ITMP seminar October 11, 2023

Based on:

2204.07542, 2209.06223, 2303.08834, 2305.03593 with Luis F. Alday, João Silva 2306.12786 with Luis F. Alday 2308.03683 with Giulia Fardelli, João Silva

1

String theory is a theory of quantum gravity.

We should understand it on curved backgrounds.

AdS/CFT allows us to study strongly coupled gauge theories.

Relevant for the standard model.

Having multiple descriptions for the same physical system can be extremely powerful.

See this talk!

 $\mathsf{AdS}_{d+1} \in \mathbb{R}^{d,2}$

 AdS_{d+1} has a *d*-dimensional conformal boundary.

1 process - 3 descriptions

- non-abelian gauge theory
- conformal symmetry
- supersymmetry
- integrable

This talk:

Find the amplitude without quantizing the string.

Parameters

-5d bulk of AdS: IIb string theory on $AdS_5 \times S^5$

- AdS radius R_{AdS}
- string length Ls
- string coupling g_s

Weakly coupled strings:

$$g_s \ll 1 \quad \Leftrightarrow \quad N \gg 1$$

Expansion around flat space:

$$\frac{R_{\mathsf{AdS}}}{L_{\mathsf{s}}} \gg 1 \quad \Leftrightarrow \quad \lambda \gg 1$$

4d boundary of AdS:

- $\mathcal{N}=4$ super Yang Mills theory
 - SU(N) gauge group

• coupling
$$\lambda = \frac{R_{AdS}}{L_s}$$

Part 2:

- Boundary CFT description
- Finding the world-sheet correlator
- Checks: integrability and localization

Part 1: String scattering in flat space $(R_{AdS} \rightarrow \infty)$

> STRING AMPLITUDE SHOPPING LIST

- REGGE BOUNDEDNESS
- PARTIAL WAVE EXPANSION
- WORLDSHEET INTEGRAL

Part 1 Flat Space Review

The Virasoro-Shapiro amplitude (flat space)

In the beginning, there was the amplitude. [Veneziano,1968;Virasoro,1969;Shapiro,1970]

Scattering of 4 gravitons in the type IIb superstring:

Virasoro-Shapiro amplitude $A^{(0)}(S,T) = -\frac{\Gamma(-S)\Gamma(-T)\Gamma(-U)}{\Gamma(S+1)\Gamma(T+1)\Gamma(U+1)}$

$$S = -\frac{L_s^2}{4}(p_1+p_2)^2, \ T = -\frac{L_s^2}{4}(p_1+p_3)^2, \ U = -\frac{L_s^2}{4}(p_1+p_4)^2$$
$$S + T + U = 0$$

Regge boundedness (flat space)

String amplitudes have soft UV (Regge) bahaviour

$$\lim_{|S| o \infty} A^{(0)}(S,T) \sim S^{\mathcal{T}+lpha_0}, \quad \mathsf{Re}(\mathcal{T}) < 0$$

and higher spin resonances

$$m^2, \ell$$
 = $\frac{P_\ell(S)}{T - m^2}$ $P_\ell(S) = S^\ell + O(S^{\ell-1})$

Regge bahaviour places strong constraints on the coefficients $a_{\delta,\ell}$ in

$$A^{(0)}(S,T) = \sum_{(\delta,\ell)} rac{a_{\delta,\ell} P_\ell(S)}{T-\delta}$$

STRING AMPLITUDE SHOPPING LIST REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION

WORLDSHEET INTEGRAL

The exchanged massive string spectrum is extracted via the partial wave expansion

$$A^{(0)}(S,T) = \sum_{(\delta,\ell)} rac{a_{\delta,\ell} P_\ell(S)}{T-\delta}$$

It forms linear Regge trajectories.

World-sheet integral (flat space)

The amplitude is also given by an integral over world-sheets:

$$A^{(0)}(S,T) = \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2} G^{(0)}_{\text{tot}}(S,T,z)$$

$$G_{ ext{tot}}^{(0)}(S,T,z) = rac{1}{3}\left(rac{1}{U^2} + rac{|z|^2}{S^2} + rac{|1-z|^2}{T^2}
ight)$$

The integrand is a single-valued function of z!

STRING AMPLITUDE SHOPPING LIST

- REGGE BOUNDEDNESS - PARTIAL WAVE EXPANSION - WORLDSHEET INTEGRAL

$\begin{array}{c} {\sf Part \ 2} \\ {\sf AdS/CFT} \end{array}$

1 process - 3 observables

 $\langle \mathcal{O}_2(x_1)\mathcal{O}_2(x_2)\mathcal{O}_2(x_3)\mathcal{O}_2(x_4)\rangle$ superconformal Ward identity H(U, V) $U = \frac{(x_1 - x_2)^2 (x_3 - x_4)^2}{(x_1 - x_3)^2 (x_2 - x_4)^2}$, $V = \frac{(x_1 - x_4)^2 (x_2 - x_3)^2}{(x_1 - x_3)^2 (x_2 - x_4)^2}$ Mellin transform M(s,t)Borel transform (flat space limit [Penedones;2010]) $A(S, T) = \sum_{k=0}^{\infty} \left(\frac{1}{\sqrt{\lambda}}\right)^k A^{(k)}(S, T)$ world-sheet integral $A^{(k)}(S,T) = \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2} G^{(k)}_{\text{tot}}(S,T,z)$

Mellin transform

$$H(U, V) = \int_{-i\infty}^{i\infty} \frac{dsdt}{(4\pi i)^2} U^{\frac{s}{2} + \frac{2}{3}} V^{\frac{t}{2} - \frac{4}{3}} \Gamma\left(\frac{4}{3} - \frac{s}{2}\right)^2 \Gamma\left(\frac{4}{3} - \frac{t}{2}\right)^2 \Gamma\left(\frac{4}{3} - \frac{u}{2}\right)^2 M(s, t)$$

Borel transform

$$A(S,T) = \lambda^{\frac{3}{2}} \int_{-i\infty}^{i\infty} \frac{d\alpha}{2\pi i} e^{\alpha} \alpha^{-6} M\left(\frac{2\sqrt{\lambda}S}{\alpha}, \frac{2\sqrt{\lambda}T}{\alpha}\right)$$

The Borel transform

Borel transform

$$A(S,T) = \lambda^{\frac{3}{2}} \int_{-i\infty}^{i\infty} \frac{d\alpha}{2\pi i} e^{\alpha} \alpha^{-6} M\left(\frac{2\sqrt{\lambda}S}{\alpha}, \frac{2\sqrt{\lambda}T}{\alpha}\right)$$

• Maps Witten diagrams to Feynman diagrams for $R_{AdS} \rightarrow \infty$ [Penedones;2010]

Ø Borel summation of the low energy expansion:

$$M(s,t) = \sum_{p,q} \frac{\Gamma(6+p+q)}{\lambda^{\frac{3}{2}}} \left(\frac{s}{2\sqrt{\lambda}}\right)^p \left(\frac{t}{2\sqrt{\lambda}}\right)^q \alpha_{p,q} \quad \Rightarrow \quad A(S,T) = \sum_{p,q} S^p T^q \alpha_{p,q}$$

 \rightarrow

Stringy flat space limit:

$$rac{R_{
m AdS}}{L_s} >> 1\,, \qquad S \sim rac{L_s}{R_{
m AdS}} s \sim L_s^2 (p_1 + p_2)^2 ext{ finite}$$

The bound on chaos: [Maldacena,Shenker,Stanford;2015]

- limits growth of chaos in thermal quantum systems with many degrees of freedom.
- is diagnosed with out-of-time-ordered correlators.
- applies to correlators in large N CFTs in the Regge limit.

Bound on chaos in Mellin space

$$\lim_{|s| o \infty} |M(s,t)| \lesssim |s|^{-2}, \; {
m Re}(t) < 2$$

STRING AMPLITUDE SHOPPING LIST

- REGGE BOLINDEDNESS - PARTIAL WAVE EXPANSION - WORLDSHEET INTEGRAL

Operator product expansion

We can expand $\langle \mathcal{O}_2(x_1)\mathcal{O}_2(x_2)\mathcal{O}_2(x_3)\mathcal{O}_2(x_4)\rangle$ using:

Operator product expansion (OPE)

$$\mathcal{O}_2(x)\mathcal{O}_2(0) = \sum_{\mathcal{O}_{\Delta,\ell} \text{ primaries}} C_{\Delta,\ell} c_{\Delta,\ell}(x,\partial_y)\mathcal{O}_{\Delta,\ell}(y)|_{y=0}$$
OPE data
• $\Delta = \text{dimension}$
• $\ell = \text{spin}$
• $C_{\Delta,\ell} = \text{OPE}$
coefficients

M(s, t) has only simple poles, given by [Mack;2009], [Penedones,Silva,Zhiboedov;2019] Poles and residues of M(s, t)

$$M(s,t)\sim rac{\mathcal{C}_{\Delta,\ell}^2 Q_{\Delta,\ell,m}(t)}{s-(\Delta-\ell+2m)}$$

STRING AMPLITUDE SHOPPING LIST REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION WORLDSHEET INTEGRAL M(s, t) has only OPE poles:

$$ext{poles} \ \sim rac{C_{\Delta,\ell}^2 Q_{\Delta,\ell,m}(t)}{s' - (\Delta - \ell + 2m)}$$

Regge bounded due to bound on chaos:

$$\lim_{|s| o \infty} |M(s,t)| \lesssim |s|^{-2}, \; {
m Re}(t) < 2$$

$$M(s,t) = \oint_{s} \frac{ds'}{2\pi i} \frac{M(s',t)}{(s'-s)} = -\sum_{\text{operators}} \left(\frac{C_{\Delta,\ell}^2 Q_{\Delta,\ell,m}(t)}{s - (\Delta - \ell + 2m)} + \frac{C_{\Delta,\ell}^2 Q_{\Delta,\ell,m}(t)}{u - (\Delta - \ell + 2m)} \right)$$

STRING AMPLITUDE SHOPPING LIST

Spectrum of exchanged operators

Exchanged operators: short single-trace operators of $\mathcal{N} = 4$ SYM theory

STRING AMPLITUDE SHOPPING LIST

REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION

WORLDSHEET INTEGRAL

Degeneracies in the spectrum

The amplitude encodes OPE data of multiple degenerate superprimaries. We determined the degeneracies starting from type IIb strings in flat 10d:

$$SO(9) \rightarrow SO(4) \times SO(5) \stackrel{KK}{\rightarrow} SO(4) \times SO(6)$$

Number multiple		1					Î	l
• SC		6	1					8
• Δ		52	6	1				6
Example		331	40	6	1			4
The cou $\delta \leq$ 3 w		1104	157	24	4	1		2
[Gromov		547	99	22	6	2	1	0
	δ	6	5	4	3	2	1	

Number of superconformal long multiplets with superprimary $\mathcal{O}_{\delta,\ell}$ • SO(6) singlet • $\Delta = 2\sqrt{\delta}\lambda^{\frac{1}{4}} + O(\lambda^{0})$

Example: $\mathcal{O}_{1,0} = \text{Konishi} \sim \text{Tr}(\phi' \phi_I)$

The counting was confirmed for $\delta \leq 3$ with quantum spectral curve. [Gromov,Hegedus,Julius,Sokolova;2023]

STRING AMPLITUDE SHOPPING LIST

- REGGE BOUINDEDNESS PARTIAL WAVE EXPANSION WORLDSHEET INTEGRAL

Dispersion relation \rightarrow Residues

Dispersion relation for $M(s,t) \rightsquigarrow A^{(k)}(S,T)$ expanded around $S = \delta = 1, 2, ...$

$$\mathcal{A}^{(k)}(S,T) = \frac{R_{3k+1}^{(k)}(T,\delta,C_{\delta,\ell}^{2(0)})}{(S-\delta)^{3k+1}} + \ldots + \frac{R_{1}^{(k)}(T,\delta,C_{\delta,\ell}^{2(0)},\ldots,\Delta_{\delta,\ell}^{(k)},C_{\delta,\ell}^{2(k)})}{S-\delta} + \mathsf{reg}.$$

Two lessons:

- (OPE data)^(k-1) fixes most residues of $A^{(k)}(S, T)$!
- **2** $G_{tot}^{(k)}(S, T, z)$ should have transcendentality 3k:

$$\int d^2 z \, |z|^{-2S-2} |1-z|^{-2T-2} \log^{3k} |z|^2 \propto rac{1}{(S-\delta)^{3k+1}} + O\left((S-\delta)^0
ight)$$

Next steps (order by order):

- Write world-sheet ansatz for $A^{(k)}(S, T)$.
- Compute its residues and match with the above to fix ansatz.

Single-valued multiple polylogarithms

MPLs:

$$\begin{aligned}
\mathsf{MPLs:} & \mathsf{SVMPLs:} \quad [\mathsf{Brown}; 2004] \\
\mathcal{L}_{a_1 \dots a_{|w|}}(z) &= \int_0^z \frac{dt}{t - a_1} \mathcal{L}_{a_2 \dots a_{|w|}}(t) & \mathcal{L}_w(z) &= \sum_{\substack{w_1, w_2 \\ |w_1| + |w_2| = |w|}} \mathcal{C}_{w, w_1, w_2} \mathcal{L}_{w_1}(z) \mathcal{L}_{w_2}(\bar{z}) \\
\mathcal{L}(z) &= 1, \quad a_i \in \{0, 1\}
\end{aligned}$$

Examples :

$$\begin{split} \mathcal{L}_{0^{p}}(z) &= \frac{1}{p!} \log^{p}(z) & \mathcal{L}_{0^{p}}(z) = \frac{1}{p!} \log^{p} |z|^{2} \\ \mathcal{L}_{1^{p}}(z) &= \frac{1}{p!} \log^{p}(1-z) & \mathcal{L}_{1^{p}}(z) = \frac{1}{p!} \log^{p} |1-z|^{2} \\ \mathcal{L}_{0^{p-1}1}(z) &= -\mathsf{Li}_{p}(z) & \mathcal{L}_{01}(z) = \mathsf{Li}_{2}(z) - \mathsf{Li}_{2}(\bar{z}) - \log(1-\bar{z}) \log |z|^{2} \\ &\downarrow z = 1 & \downarrow z = 1 \end{split}$$

MZVs: $\zeta(n_1, n_2, ...)$ SVMZVs: $\zeta^{sv}(n_1, n_2, ...)$ [Brown;2013]

Toy model for strings in AdS

Polyakov action:

AdS metric expanded around flat space:

$$S_{P} = \frac{1}{4\pi\alpha'} \int d^{2}\sigma \sqrt{g} g^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} G_{\mu\nu}(X) \longleftarrow G_{\mu\nu}(X) = \eta_{\mu\nu} + \frac{h_{\mu\nu}}{R_{AdS}^{2}} + \cdots$$

$$= S_{flat} + \frac{1}{R_{AdS}^{2}} \varprojlim \frac{\partial^{2}}{\partial q^{\mu} \partial q^{\nu}} V_{graviton}^{\mu\nu}(q) + \cdots \qquad h_{\mu\nu} \sim X_{\mu} X_{\nu} \sim \lim_{q \to 0} \frac{\partial^{2}}{\partial q^{\mu} \partial q^{\nu}} e^{iq \cdot X}$$

$$= \tilde{V}$$
Amplitude:
$$A_{4}(p_{i}) \sim \int \mathcal{D}X \mathcal{D}g \ e^{-S_{P}} V_{graviton}^{4} = \int \mathcal{D}X \mathcal{D}g \ e^{-S_{flat}} \left(1 - \frac{\tilde{V}}{R_{AdS}^{2}} + \frac{1}{2} \frac{\tilde{V}^{2}}{R_{AdS}^{4}} + \cdots\right) V_{graviton}^{4}$$

$$\Rightarrow \quad A_4^{(k)}(p_i) \sim \lim_{q_i \to 0} \left(\frac{\partial}{\partial q_i}\right)^{2k} A_{4+k}^{(0)}(p_i, q_i) + \dots$$

Soft gravitons in flat space

$$\mathcal{A}_{4}^{(k)}(p_i) \sim \lim_{\epsilon \to 0} \left(\frac{\partial}{\epsilon \, \partial q_i} \right)^{2k} \mathcal{A}_{4+k}^{(0)}(p_i, \epsilon q_i) + \dots$$

Soft graviton theorem:

$$A_{n+1}(p_1,\ldots,p_n,\epsilon q) = \sum_{i=1}^n \left(\frac{1}{\epsilon} \frac{\varepsilon_{\mu\nu} p_i^{\mu} p_i^{\nu}}{p_i \cdot q} + \frac{\varepsilon \cdot p_i \varepsilon_{\mu} q_{\nu} J_i^{\mu\nu}}{p_i \cdot q} + O(\epsilon) \right) A_n(p_1,\ldots,p_n)$$

Flat space amplitude with k soft gravitons:

$$\begin{aligned} A_{4+k}^{(0)}(p_i,\epsilon q_i) &\sim \frac{1}{\epsilon^k} A_4^{(0)}(p_i) + \frac{1}{\epsilon^{k-1}} "\partial_{p_i} "A_4^{(0)}(p_i) + \dots \\ &\sim \int d^2 z |z|^{-25-2} |1-z|^{-2T-2} \left(\frac{1}{\epsilon^k} + \frac{1}{\epsilon^{k-1}} \left(\# \log |z|^2 + \# \log |1-z|^2 \right) + \dots + \epsilon^{2k} \mathcal{L}_{|w|=3k}(z) \right) \end{aligned}$$

 \Rightarrow $G_{tot}^{(k)}(S, T, z) \sim$ single-valued multiple polylogs of weight $\leq 3k$

World-sheet correlator (ansatz)

Ansatz:

$$A^{(k)}(S,T) = B^{(k)}(S,T) + B^{(k)}(U,T) + B^{(k)}(S,U)$$

$$B^{(k)}(S,T) = \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2} G^{(k)}(S,T,z)$$

Assumed properties of $G^{(k)}(S, T, z)$:

- uniform transcendentality 3k (SVMPLs(z), SVMZVs)
- rational function in S, T with homogeneity 2k 2
- denominator = U^n , $n \leq 2$
- crossing symmetry: $G^{(k)}(S,T,z) = G^{(k)}(T,S,1-z)$

Recall (flat space):

$$G^{(0)}(S,T,z) = rac{1}{3U^2}$$

STRING AMPLITUDE SHOPPING LIST

- REGGE BOUNDEDNESS - PARTIAL WAVE EXPANSION - WORLDSHEET INTEGRAL Symmetrised single-valued multiple polylogs:

$$\mathcal{L}^\pm_w(z) = \mathcal{L}_w(z) \pm \mathcal{L}_w(1-z) + \mathcal{L}_w(ar{z}) \pm \mathcal{L}_w(1-ar{z})$$

k = 1: weight 3 basis = 4 symmetric + 3 antisymmetric functions

Solution:

$$G^{(1)}(S, T, z) = -\frac{1}{6}\mathcal{L}^{+}_{000}(z) + 0\mathcal{L}^{+}_{001}(z) - \frac{1}{4}\mathcal{L}^{+}_{010}(z) + 2\zeta(3) + \frac{S-T}{S+T}\left(-\frac{1}{6}\mathcal{L}^{-}_{000}(z) + \frac{1}{3}\mathcal{L}^{-}_{001}(z) + \frac{1}{6}\mathcal{L}^{-}_{010}(z)\right)$$

World-sheet correlator (second correction)

k = 2: weight 6 basis = 25 symmetric + 20 antisymmetric functions:

 $\mathcal{L}_{010110}^{-}(z), \mathcal{L}_{011110}^{-}(z), \zeta(3)\mathcal{L}_{000}^{-}(z), \zeta(3)\mathcal{L}_{001}^{-}(z), \zeta(3)\mathcal{L}_{010}^{-}(z), \zeta(5)\mathcal{L}_{0}^{-}(z) \right)$

STRING AMPLITUDE SHOPPING LIST

REGGE BOUNDEDNESS PARTIAL WAVE EXPANSION WORLDSHEET INTEGRAL

$$G^{(2)}(S,T,z) = (S^2 + T^2) \ \vec{r_1} \cdot \vec{L}^+ + ST \ \vec{r_2} \cdot \vec{L}^+ + \frac{(S^2 + T^2)(S - T)}{S + T} \ \vec{r_3} \cdot \vec{L}^- + \frac{ST(S - T)}{S + T} \ \vec{r_4} \cdot \vec{L}^-$$
$$\vec{r_1} = \left(-\frac{1}{18}, \frac{2971}{432}, \frac{13111}{3888}, -\frac{7271}{3888}, \ldots\right), \quad \vec{r_2} = \ldots$$

We need to input the dimension of 1 operator ($\Delta_{1,0}^{(2)} = \text{Konishi}$) to fix $A^{(2)}(S, T)$ completely.

OPE data

STRING AMPLITUDE SHOPPING LIST

$$\begin{split} k &= 0: \qquad \langle C^{2(0)} \rangle_{\delta,\ell} = \# \\ k &= 1: \qquad \sqrt{\delta} \langle C^{2(0)} \Delta^{(1)} \rangle_{\delta,\ell} = \#, \quad \langle C^{2(1)} \rangle_{\delta,\ell} = \# \zeta(3) + \# \\ k &= 2: \qquad \langle C^{2(0)} (\Delta^{(1)})^2 \rangle_{\delta,\ell} = \# \\ \sqrt{\delta} \langle C^{2(0)} \Delta^{(2)} + C^{2(1)} \Delta^{(1)} \rangle_{\delta,\ell} = \# \zeta(3) + \# \\ \langle C^{2(2)} \rangle_{\delta,\ell} = \# \zeta(3)^2 + \# \zeta(5) + \# \zeta(3) + \# \end{split}$$

Leading Regge trajectory:

We compute $\forall \delta, \ell \qquad \# \in \mathbb{Q}$

$$\begin{split} &\Delta\left(\frac{\ell}{2}+1,\ell\right)=2\sqrt{\frac{\ell}{2}+1}\lambda^{\frac{1}{4}}-2+\frac{3\ell^{2}+10\ell+16}{4\sqrt{2(\ell+2)}}\lambda^{-\frac{1}{4}}\\ &-\frac{21\ell^{4}+144\ell^{3}+292\ell^{2}+80\ell-128+96(\ell+2)^{3}\zeta(3)}{32(2(\ell+2))^{\frac{3}{2}}}\lambda^{-\frac{3}{4}}+O(\lambda^{-\frac{5}{4}})\,, \end{split}$$

Agrees with integrability result!

[Gromov, Serban, Shenderovich, Volin; 2011], [Basso; 2011], [Gromov, Valatka; 2011]

World-sheet \rightarrow Low energy expansion

The low energy expansion $(S \sim T \sim 0)$ can be computed following [Vanhove,Zerbini;2018]

As in flat space! [Stieberger;2013], [Brown, Dupont; Schlotterer, Schnetz; Vanhove, Zerbini;2018]

$$A^{(k)}(S,T) = SUGRA^{(k)} + 2\sum_{a,b=0}^{\infty} (\frac{1}{2}(S^2 + T^2 + U^2))^a (STU)^b \alpha_{a,b}^{(k)}$$

We compute $\forall a, b \qquad \# \in \mathbb{Q}$

$$\alpha_{a,b}^{(0)} = \sum_{k_i \text{ odd}} \#\zeta(k_1) \dots \zeta(k_n)$$

$$\alpha_{a,b}^{(1)} = \sum_{k_i \text{ odd}} \#\zeta^{\text{sv}}(k_1, k_2, k_3)\zeta(k_4) \dots \zeta(k_n) + \dots$$

$$\alpha_{a,b}^{(2)} = \sum_{k_i \text{ odd}} \#\zeta^{\text{sv}}(k_1, k_2, k_3, k_4, k_5)\zeta(k_6) \dots \zeta(k_n) + \dots$$

In particular:

$$\alpha_{0,0}^{(1)} = 0, \quad \alpha_{1,0}^{(1)} = -\frac{22}{3}\zeta(3)^2, \quad \alpha_{0,0}^{(2)} = \frac{49}{4}\zeta(5), \quad \alpha_{1,0}^{(2)} = \frac{4091}{16}\zeta(7)$$

Agrees with localisation result!

[Binder, Chester, Pufu, Wang; 2019], [Chester, Pufu; 2020], [Alday, TH, Silva; 2022]

Correlators with Kaluza-Klein modes

We also computed the $\mathit{O}(1/\sqrt{\lambda})$ string amplitude for

$$\mathcal{O}_2(x_1)\mathcal{O}_2(x_2)\mathcal{O}_p(x_3)\mathcal{O}_p(x_4)\rangle$$

$$\mathcal{O}_p = \mathsf{K}\mathsf{K} \; \mathsf{mode}$$

 $\Delta = p = 3, 4, \dots$
 $[p, 0, 0] \; \mathsf{of} \; SO(6)$

• less crossing symmetry:

A(S,T)=A(S,U)

new operators:

World-sheet correlator for $\langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_p \mathcal{O}_p \rangle$

Ansatz:

$$A^{(1)}(S,T) = B_1^{(1)}(S,T) + B_1^{(1)}(S,U) + B_1^{(1)}(U,T) + B_2^{(1)}(S,T) + B_2^{(1)}(S,U)$$
$$B_i^{(1)}(S,T) = \int d^2 z |z|^{-2S-2} |1-z|^{-2T-2} G_i^{(1)}(S,T,z), \quad i = 1,2$$

Result:

$$G_{1}^{(1)}(S,T,z) = \frac{1}{24} \left(-p^{2} \mathcal{L}_{000}^{+}(z) + 2(p-2)p \mathcal{L}_{001}^{+}(z) + (p^{2}-2p-6)\mathcal{L}_{010}^{+}(z) + 48\zeta(3) \right) \\ + \frac{p^{2}(S-T)}{24(S+T)} \left(-\mathcal{L}_{000}^{-}(z) + 2\mathcal{L}_{001}^{-}(z) + \mathcal{L}_{010}^{-}(z) \right) \\ G_{2}^{(1)}(S,T,z) = \frac{p(p-2)}{24(S+T)} \left(3S\mathcal{L}_{000}^{+}(z) - 2(2S+T)\mathcal{L}_{001}^{+}(z) - (2S+T)\mathcal{L}_{010}^{+}(z) \right) \\ + \frac{p(p-2)}{24(S+T)} \left(3S\mathcal{L}_{000}^{-}(z) - 2(2S-T)\mathcal{L}_{001}^{-}(z) - (2S-T)\mathcal{L}_{010}^{-}(z) \right)$$

Degeneracies of odd-spin operators

	Even spin, $[0, 0, 0]$ of $SO(6)$:							Odd spin, [1,0,0] of <i>SO</i> (6):									
l	1						1			l	,						
8						1	6			9						2	
6					1	6	52			7					2	32	
4				1	6	40	331			5				2	28	316	
2		1		4	24	157	1104			3			2	22	206	1836	
0	1	2		6	22	99	547	→		1		2	10	70	502	3536	→
	1	2		3	4	5	6	δ			1	2	3	4	5	6	δ

The leading odd spin trajectory has very low degeneracies!

Good target for further study (our method, quantum spectral curve, ...).

- Open strings / AdS Veneziano amplitude
 - Generalizations of KLT relations / single-valued map?
 - Gluon scattering on $AdS_5 imes S^5/\mathbb{Z}_2$ with D7 branes
 - $4d \ \mathcal{N} = 2 \ USp(2N)$ gauge theory: localization results available [Beccaria,Korchemsky,Tseytlin;2022],[Behan,Chester,Ferrero;2023]
 - Problem: no strong coupling OPE data known for consistency checks. Integrability?
- Compute $A^{(k)}(S, T)$ directly from string theory?
 - Ramond-Ramond background flux...
 - Pure spinors?

Thank you!