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Why Study Conformal Field Theories (CFTs)?

CFTs describe universal physics of scale invariant critical points:

continuous phase transitions in condensed matter and
statistical systems

fixed points of RG flows

Provide a handle on

Universal structure of the landscape of QFTs

Quantum gravity via the AdS/CFT correspondence and
holography

String theory

Black holes



The Conformal Bootstrap

The conformal bootstrap program seeks to systematically apply

conformal symmetry
crossing symmetry
unitarity/reflection positivity

conditions to map out and solve the space of allowed CFTs

Figure: Allowed region for 3D Ising Model [El-Showk, Paulos, Poland,
Rychkov, Simmons-Duffin, Vichi, ’12; ’14]



The Ultimate Dream

Tremendous progress both on the numerical and analytic
fronts! e.g. Ferrara et al. (1971, 1973), Dobrev et al. (1976, 1977), Polyakov (1974), Dolan &

Osborn (2001, 2004, 2011), Poland et al. (2012), Simmons-Duffin (2014), El-Showk et al. (2014), Kos et

al. (2014, 2015, 2016), Costa & Hansen (2015), Rejon-Barrera & Robbins (2016), Echeverri et al. (2016),

Costa et al. (2016), Fortin & Skiba (2016, 2019), Karateev et al. (2017), Poland & Simmons-Duffin

(2019)

Dream: to classify and solve the entire landscape of CFTs and
predict their observables

CFTs are signposts in the landscape of QFTs!



The Ultimate Dream (cont.)

QFTs: Renormalization group flows from UV to IR fixed points

Large classes of QFTs as relevant deformations of small
subset of CFTs
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What is a CFT?

A special quantum field theory invariant under the conformal
transformations:

g ′µν(x ′) = c(x)δµν

Jacobian:

J =
∂x ′µ

∂xν
= b(x)Mµ

ν(x), M ∈ SO(d)

Preserve angles
Locally look like a rotation followed by a scale transformation
x → λx



The Spectrum of Operators

Two kinds of operators in CFTs:

quasi-primaries [Kµ,O(x)(0)] = 0: transform simply under
conformal transformations, e.g.

x → x ′, O(x)(x)→ Õ(x)(x ′) = b(x)−∆O(x)(x)

descendants: don’t!

Complete spectrum of operators: primaries+infinite towers of
descendants

Organic observables in CFTs: M-point correlation functions of
operators, 〈O(x)(x1) . . .O(x)(xM)〉



What are Conformal Blocks?

Well-defined objects appearing in expansion of the four-point
functions

Capture contributions of particular exchanged operators in the
OPE

Similar to an expansion in spherical harmonics Ym
` but for

CFTs



Conformal Bootstrap

Impose crossing symmetry

Interchanging x1 ↔ x3 gives the crossing symmetry condition:∑
∆,`

λ2
Og∆,`(u, v) =

∑
∆,`

λ2
Og∆,`(v , u)



Our Goal

Goal: Efficient Rules for Arbitrary Conformal Blocks

Approach based on embedding space OPE formalism given in
Fortin, VP, Skiba (2019)

Conformal blocks expressed as specific linear combinations of
Gegenbauer polynomials in a special variable, with a unique
substitution rule ascribed to each polynomial piece

Applying each rule term-by-term directly generates the
complete conformal block in terms of a four-point tensorial
generalization of the Exton G -function (∝ scalar exchange
block in 〈SSSS〉)



Our Goal (cont.)

Procedure for determining a given block:

1 Writing down the relevant group theoretic input data: the
projection operators and tensor structures

2 Identifying the specific linear combination of Gegenbauer
polynomials along with the associated substitution rules for
each piece

In this work: Wish to make this approach systematic ⇒ Derive a
set of general rules



Embedding Space OPE

Replace the product of two local quasi-primary operators by an
infinite sum of operators at some point on the lightcone:

Oi (η1)Oj(η2) = (T N i
12 Γ)(T N j

21 Γ) ·
∑
k

Nijk∑
a=1

ac
k

ij at
12k
ij

(η1 · η2)pijk

·D(d ,hijk−na/2,na)
12 (T12Nk

Γ) ∗ Ok(η2)

where

pijk =
1

2
(τi + τj − τk), hijk = −1

2
(χi − χj + χk),

τO = ∆O − SO, χO = ∆O − ξO, ξO = SO − bSOc

Most convenient form for computing M-point correlation
functions



The Embedding Space

Embedding space Md+2:

A natural habitat for the conformal group:
(d + 2)-dimensional hypercone where operators live

η2 ≡ gABη
AηB = 0

Light rays in one-to-one correspondence with position space
points



The Embedding Space (cont.)

Coordinates on the hypercone:

ηA = (ηµ, ηd+1, ηd+2)

ληA identified with ηA for λ > 0

Connection to position space:

xµ =
ηµ

−ηd+1 + ηd+2

In the embedding space,

Conformal transformations act linearly: Conformal group
becomes like Lorentz group!

All operators in d-dimensional CFT need to somehow be lifted
to Md+2.



Essential Ingredients of the Formalism

OPE differential operator D(d ,hijk−na/2,na)
12

Projection operators P̂N
ij

Half-projection operators T N i
12 Γ

Tensor structures at
12k
ij

Special metric AAB
ij



OPE differential operator

OPE differential operator D(d ,hijk−na/2,na)
12 given by

D(d ,h,n)A1···An

ij =
1

(η1 · η2)
n
2

D2(h+n)
ij ηA1

j · · · η
An
j ,

D2
ij = (ηi · ηj)∂2

j − (d + 2ηj · ∂j)ηi · ∂j

Explicit action of this operator known for any relevant
quantity!

Consequence: Its action can be accounted for by simple
substitution rules on specific quantities

Useful for computation of conformal blocks

Ferrara et al. (1971, 1973), Fortin, Skiba (2019)



Projection Operators

Projection operators: P̂N
ij in place to restrict operators to the

proper representations

Operators satisfy the essential properties:

1 the projection property P̂N · P̂N ′ = δN ′N P̂N ,

2 the completeness relation
∑

N|nv fixed P̂N = 1− traces,

3 the tracelessness condition
g · P̂N = γ · P̂N = P̂N · g = P̂N · γ = 0

with nv the total number of vector indices



Half-Projection Operators

Half-projection operators (T N)
µ1···µnv δ
α1···αn to general irreps N

n = 2S = 2
r−1∑
i=1

Ni + Nr , nv =
r−1∑
i=1

iNi + rbNr/2c

δ spinor index only present for odd Nr in odd d

Encode transformation properties of operators ON , ON ∼ T N

ON
α1···αn

= (T N)
δµnv ···µ1
α1···αn ON

µ1···µnv δ,

ON
µ1···µnv δ = (TN)αn···α1

µ1···µnv δ
ON
α1···αn



Half-Projection Operators (cont.)

Essentially square roots of projection operators:

TN ∗ T N = P̂N

Are transverse objects to match the transversality of operators

Serve to translate the spinor indices carried by each operator
to “dummy” vector and spinor indices



Tensor Structures

Tensor structures at
12
ijk are

Determined by three irreps of operators in 3-point function
〈ON iON jONk 〉

Serve to intertwine N i , N j , and Nk into a symmetric
traceless representation

Number Nijk of symmetric irreducible representations
appearing in N i ⊗N j ⊗Nk matches number of OPE
coefficients

Set of all at
12
ijk forms basis for a vector space



Embedding Space Metric

For general irreps of the Lorentz group, necessary to properly
remove traces!

For this, require a new embedding space metric:

AAB
ij = gAB −

ηAi η
B
j

(ηi · ηj)
−

ηBi η
A
j

(ηi · ηj)



Embedding Space Metric (cont.)

Special metric is doubly-transverse and symmetric:

AAB
ij = ABA

ij = AAB
ji = ABA

ji ,

ηiAAAB
ij = ηjAAAB

ij = 0,

AAC
ij AijC

B = AAB
ij ,

Same trace as in position space:

AijA
A = d



From Position Space to Embedding Space

Building blocks:

gµν

εµ1···µd

γµ1···µn

Relationship between position-space and embedding space
quantities:

gµν → AAB
12 = gAB −

ηA1 η
B
2

(η1 · η2)
−

ηB1 η
A
2

(η1 · η2)
,

εµ1···µd → εA1···Ad
12 =

1

(η1 · η2)
η1A′0

εA
′
0A
′
1···A′dA

′
d+1η2A′d+1

A Ad

12A′d
· · · A A1

12A′1
,

γµ1···µn → ΓA1···An
12 = ΓA′1···A′nA An

12A′n
· · · A A1

12A′1
∀ n ∈ {0, . . . , r}.



Three-Point Correlation Functions

Most general embedding space 3-point function:

〈Oi (η1)Oj(η2)Om(η3)〉 =

(T N i
12 Γ){Aa}(T N j

21 Γ){Bb}(T Nm
31 Γ){Ee}

(η1 · η2)
1
2

(τi+τj−χm)(η1 · η3)
1
2

(χi−χj+τm)(η2 · η3)
1
2

(−χi+χj+χm)

·
Nijm∑
a=1

acijm(G
ij |m
(a| ){aA}{bB}{eE}

(G
ij |m
(a| ){aA}{bB}{eE} - “3-point” conformal blocks



Four-Point Correlation Functions

Most general embedding space 4-point function:

〈Oi (η1)Oj(η2)Ok(η3)Ol(η4)〉 =

(T N i
12 Γ){Aa}(T N j

21 Γ){Bb}(T Nk
34 Γ){Cc}(T N l

43 Γ){Dd}

(η1 · η2)
1
2
α12(η1 · η3)

1
2
α13(η1 · η4)

1
2
α14(η3 · η4)

1
2
α34

·
∑
m

Nijm∑
a=1

Nklm∑
b=1

ac
m

ij bαklm(G
ij |m|kl
(a|b] ){aA}{bB}{cC}{dD}

with

α12 = (τi − χi + τj + χj), α13 = (χi − χj + χk − χl),

α14 = (χi − χj − χk + χl), α34 = (−χi + χj + τk + τl)

(G
ij |m|kl
(a|b] ){aA}{bB}{cC}{dD} - “4-point” conformal blocks



Bases of Tensor Structures

Two kinds of bases arise naturally in the context of the formalism:

1 OPE basis (a

2 Three-point basis [a

Three-point blocks in the two bases related via rotation matrices

G
ij |m
(a| =

Nijm∑
a′=1

(R−1
ijm)aa′G

ij |m
[a′| , acijm =

Nijm∑
a′=1

a′αijm(Rijm)a′a

where aαijm are the associated 3-point function coefficients,
implying

Nijm∑
a=1

acijmG
ij |m
(a| =

Nijm∑
a=1

aαijmG
ij |m
[a|



Bases of Tensor Structures (cont.)

Three-point basis [a is the natural one for 3-point functions!

3-point conformal blocks in this basis:

G
ij |m
[a| = η̄3 · Γ aF

12
ijm(A12, Γ12, ε12;A12 · η̄3)

η̄3 · Γ appears only if ξk = 1
2 , i.e. the exchanged quasi-primary

operator is fermionic

Arbitrary 3-point functions simply obtained by enumerating basis
{aF 12

ijm} made from

A12’s

Γ12’s

ε12’s

A12 · η̄3’s



Bases of Tensor Structures (cont.)

Conformal blocks feature simplest form in mixed

OPE-three-point basis: G
ij |m|kl
(a|b] (Fortin, VP, Skiba (2019) )

For the conformal bootstrap: most convenient to work in the
pure three-point basis

Pure three-point blocks obtained from mixed ones via

G
ij |m|kl
[a|b] =

Nijm∑
a′=1

(Rijm)aa′G
ij |m|kl
(a′|b]

So, strategy is to determine

1 Mixed basis blocks G
ij |m|kl
(a|b]

2 Rotation matrices (Rijm)aa′



Tensor Structures for Towers of Exchanged Operators

Consider tensor structures for exchanged towers of
quasi-primary operators Nm + `e1

If seed irrep Nm + `mine1 can be exchanged, so can Nm + `e1

for any ` ≥ `min

Idea:

1 Take `-dependence into account once and for all (fixed)

2 Just compute seed part Nm + `mine1 (varies)

Both Nm and `min depend on the irreps of the operators of
interest



Tensor Structures for Towers of Exchanged Operators
(cont.)

Therefore, for exchanged quasi-primary operators in
Nm + `e1, three-point basis can be separated as

bF
34
kl ,m+` = bF

34
kl ,m+ib

(A34 · ¯̄η2)`−ib ,

aF
12
ij ,m+` = aF

12
ij ,m+ia(A12 · η̄3)`−ia → at

12
ij ,m+` = at

12
ij ,m+ia(A12)`−ia

with

(A34 · ¯̄η2)E ′′ib+1
· · · (A34 · ¯̄η2)E ′′`

(A12 · η̄3)Eia+1
· · · (A12 · η̄3)E`

the symmetrized `-dependent parts of the respective tensor
structures



Tensor Structures for Towers of Exchanged Operators
(cont.)

“Special” parts of tensor structures at
12
ij ,m+ia

and bF
34
kl ,m+ib

fixed by knowledge of the specific irreps in question

OPE basis obtained from three-point basis by replacing
A12 · η̄3 → A12

with the extra F index contracting with the OPE differential
operator

For example,

(A12 · η̄3)Eia+1
· · · (A12 · η̄3)E` → A12E ′ia+1Fia+1

· · · A12E ′`F`



Tensor Structures: An Example

Case of symmetric traceless `e1 exchange in 〈SVSV 〉: Tensor

structures are

b = 1 : (bF
34
kl ,m+`){cC}{dD}{e′′E ′′} = (A34 · ¯̄η2)D [(A34 · ¯̄η2)E ′′ ]

`

→ (bt
34
kl ,m+`){cC}{dD}{e′′E ′′}{F ′′} = A34DF ′′(A34E ′′F ′′)

`,

b = 2 : (bF
34
kl ,m+`){cC}{dD}{e′′E ′′} = A34DE ′′1

[(A34 · ¯̄η2)E ′′ ]
`−1

→ (bt
34
kl ,m+`){cC}{dD}{e′′E ′′}{F ′′} = A34DE ′′1

(A34E ′′F ′′)
`−1,

a = 1 : (aF
12
ij ,m+`){aA}{bB}{eE} = (A12 · η̄3)B [(A12 · η̄3)E ]`

→ (at
12,m+`
ij )

{Ee}{F}
{aA}{bB} = A F

12B (AEF
12 )`,

a = 2 : (aF
12
ij ,m+`){aA}{bB}{eE} = A12BE1 [(A12 · η̄3)E ]`−1

→ (at
12,m+`
ij )

{Ee}{F}
{aA}{bB} = A E1

12B (AEF
12 )`−1



Tensor Structures: An Example (cont.)

Only interested in information about the special parts

b = 1 : nb = `+ 1, ib = 0, (bt
34
klm)DF ′′ = A34DF ′′ ,

b = 2 : nb = `− 1, ib = 1, (bt
34
kl ,m+1)DE ′′1

= A34DE ′′1
,

a = 1 : na = `+ 1, ia = 0, (at
12m
ij ) F

B = A F
12B ,

a = 2 : na = `− 1, ia = 1, (at
12,m+1
ij ) E1

B = A E1
12B .



Tensor Structures: An Example

Case of er + `e1 exchange in 〈SFSF 〉:

b = 1 : (bF
34
kl ,m+`){cC}{dD}{e′′E ′′} = (C−1

Γ )de′′ [(A34 · ¯̄η2)E ′′ ]
`

→ (bt
34
kl ,m+`){cC}{dD}{e′′E ′′}{F ′′} = (C−1

Γ )de′′(A34E ′′F ′′)
`,

b = 2 : (bF
34
kl ,m+`){cC}{dD}{e′′E ′′} = (¯̄η2 · Γ34C

−1
Γ )de′′ [(A34 · ¯̄η2)E ′′ ]

`

→ (bt
34
kl ,m+`){cC}{dD}{e′′E ′′}{F ′′} = (Γ34F ′′C

−1
Γ )de′′(A34E ′′F ′′)

`,

a = 1 : (aF
12
ij ,m+`){aA}{bB}{eE} = (C−1

Γ )be [(A12 · η̄3)E ]`

→ (at
12,m+`
ij )

{Ee}{F}
{aA}{bB} = δ e

b (AEF
12 )`,

a = 2 : (aF
12
ij ,m+`){aA}{bB}{eE} = (η̄3 · Γ12C

−1
Γ )be [(A12 · η̄3)E ]`

→ (at
12,m+`
ij )

{Ee}{F}
{aA}{bB} = (ΓF

12) e
b (AEF

12 )`



Tensor Structures: An Example (cont.)

Only interested in information about the special parts

b = 1 : nb = `, ib = 0, (bt
34
klm)de′′ = (C−1

Γ )de′′ ,

b = 2 : nb = `+ 1, ib = 0, (bt
34
klm)de′′F ′′ = (Γ34F ′′C

−1
Γ )de′′ ,

a = 1 : na = `, ia = 0, (at
12m
ij ) e

b = δ e
b ,

a = 2 : na = `+ 1, ia = 0, (at
12m
ij ) eF

b = (ΓF
12) e

b .



Projection Operators to Exchanged Representations

Projection operator to exchanged irreps appears explicitly in
conformal block

Need P̂Nm+`e1
13

Useful to decompose operators as

P̂Nm+`e1
13 =

∑
t

At(d , `)Q̂Nm+`te1

13|t P̂(`−`t)e1

13|d+dt

Coefficients At(d , `) are constants

Sum is finite and `-independent

Number of terms depends on irrep Nm



Projection Operators to Exchanged Representations (cont.)

Tensor quantities Q̂Nm+`te1

13|t encode information about the
special parts of the irrep Nm + `te1

At(d , `) and Q̂Nm+`te1

13|t fixed by details of specific exchanged
irrep

Remaining indices carried by shifted projection operators for
some d ′ and `′

(P̂`
′e1

13|d ′)
E ′′1 ···E ′′`

E ′`···E
′
1

=

b`′/2c∑
i=0

(−`′)2i

22i i !(−`′ + 2− d ′/2)i

×A13(E ′1E
′
2
A(E ′′1 E ′′2

13 · · · A13E ′2i−1E
′
2i
AE ′′2i−1E

′′
2i

13 A E ′′2i+1

13E ′2i+1
· · · A E ′′

`′ )

13E ′`)

Shifted projectors not traceless when dt 6= 0

Special indices in special parts need to be extracted

For this, derived general index separation result for P̂`
′e1

13|d ′



Projection Operators: An Example

The projection operator to e2 + `e1 can be decomposed in terms
of shifted projectors as (in position space)

t (dt , `t) At(d , `) Q̂t

1 (2, 0) 2
`+2 g

ν′1
[ν1
· · · g ν′2

ν2]

2 (4, 1) 2`
`+2 g

[ν′1
[ν1

g
µ′

ν2] g
ν′2]

µ

3 (4, 1) 2`
`+2 g

[ν′1
[ν1

gν2]µg
ν′2]µ′

4 (2, 1) − 2`(−`−d/2)(d+`−1)
(`+2)(−`+1−d/2)(d+`−2) g

[ν′1
[ν1

gν2]µg
ν′2]µ′

5 (4, 2) − 2`(`−1)(−`−d/2)
(`+2)(−`+1−d/2)(d+`−2) g[ν1µg

[ν′1µ
′
g

µ′

ν2] g
ν′2]

µ

6 (4, 2) − 2`(`−1)
2(`+2)(−`+1−d/2)

(
g[ν1µ

g
[ν′1

ν2]
g
ν′2]

µ gµ
′µ′

+g [ν′1µ
′
g

ν′2]

[ν1
g

µ′
ν2]

gµµ

)



Diagrammatic Notation

Introduce convenient diagrammatic notation for index separation:

We symbolize shifted projection operator by the vertex

(P̂`e1

13|d)
{E ′′}

{E ′} =

Solid, dotted, dashed lines represent metrics of the form
A13E ′E ′ , AE ′′E ′′

13 , and A E ′′
13E ′ , respectively

A line is associated to metrics with one special index, a loop
to metrics with two special indices



Diagrammatic Notation for Separation of Special Indices

For example, the index separation identity

(P̂`e1

13|d)
{E ′′}

{E ′} = A (E ′′

13E ′s
(P̂(`−1)e1

13|d+2 )
{E ′′})

{E ′}

+
`− 1

2(−`+ 2− d/2)
A13E ′s (E ′A

(E ′′E ′′

13 (P̂(`−2)e1

13|d+2 )
{E ′′})

{E ′})

is represented as

= +



Rule for the Rotation Matrix

Can determine the rotation matrix from the relation

G
ij |m+`
(a| =

Nij,m+`∑
a′=1

(R−1
ij ,m+`)aa′ η̄3 · Γ a′F

12
ij ,m+`(A12, Γ12, ε12;A12 · η̄3)

=

Nij,m+`∑
a′=1

(R−1
ij ,m+`)aa′ η̄3 · Γ a′F

12
ij ,m+ia′

(A12, Γ12, ε12;A12 · η̄3)(A12 · η̄3)`−ia′ ,

using the symmetry properties of the irreps of the three
quasi-primary operators in question



Rule for the Rotation Matrix (cont.)

Rotation matrix determined from

Nij,m+`∑
a′=1

(R−1
ij ,m+`)aa′(a′F

12
ij ,m+ia′

){aA}{bB}{eE}{F}(A12 · η̄3)`−ia′

= (−1)2ξm(r+1)(at
12
ij ,m+ia){aA}{bB}{e′E ′}{F}(CΓΓFC

−1
Γ )e

′

e×∑
r0,r3,s0,s3,t≥0

∑
q0,q1,q2,q3≥0

aκ
ij |m+`
(q,r0,r3,s0,s3,t)

×
∑
σ

g
E ′
σ(1)

Eσ(1)
· · · g

E ′
σ(r0)

Eσ(r0)
η̄
E ′
σ(r0+1)

3 · · · η̄
E ′
σ(r0+r3)

3 (g
(Z
E )s0(η̄Z3 )s3

× S(q0,q1,q2,q3)
Zn

m+ia
v +2ξm+na−`a−r0−r3−s0−s3 )

E
n
m+ia
v −r0
σ

(−η̄2E )`a−s0



Main Elements

Totally symmetric S-tensor: structure built from g ’s, η̄1s, η̄2s,
η̄3s

S
A1···Aq̄

(q0,q1,q2,q3) = g (A1A2 · · · gA2q0−1A2q0 η̄
A2q0+1

1 · · · η̄A2q0+q1
1

×η̄A2q0+q1+1

2 · · · η̄A2q0+q1+q2
2 η̄

A2q0+q1+q2+1

3 · · · η̄Aq̄)
3 ,

q̄ = 2q0 + q1 + q2 + q3

Z indices Z ∈ {E ′σ(r0+r3+1), . . . ,E
′
σ(nm+ia

v )
,F na−`a+2ξm}

aκ
ij |m+`
(q,r0,r3,s0,s3,t) coefficients comprised from various

Pochhammer symbols, e.g.
(∆m+` + nmv + ξm + `− r0)hij,m+`+na/2−`+ia−s0+t−q0−q1



Rule for Conformal Blocks in the Mixed Basis

Conformal blocks in the mixed basis (a|b] given by

(G
ij |m+`|kl
(a|b] ){aA}{bB}{cC}{dD} =

∑
t

At(d , `)
∑

ja,jb≥0

(
ia
ja

)(
ib
jb

)
×

(−`t)ia−ja(−`t)ib−jb(−`+ `t)ja(−`+ `t)jb
(−`)ia(−`)ib

×
∑

r ,r ′,r ′′≥0
r+2r ′0+r ′1+r ′2=ja
r+2r ′′0 +r ′′1 +r ′′2 =jb

r ′0+r ′1+r ′3=r ′′0 +r ′′1 +r ′′3

(−1)`−`
′−ia+r ′1+r ′2

(−2)r
′
3+r ′′3 `′!

(d ′/2− 1)`′

× C
(d+dt ,`−`t)
ja,jb

(r , r ′, r ′′)
(
C

(d ′/2−1)
`′ (X )

)
s
ij|m+`|kl
(a|b)

(t,ja,jb,r ,r ′,r ′′)



Rule for Conformal Blocks in the Mixed Basis (cont.)

With the associated substitution rule

s
ij |m+`|kl
(a|b) (t, ja, jb, r , r ′, r ′′) : αs2

2 α
s3
3 α

s4
4 x r3

3 x r4
4 → Sym{E ′s},{E ′′s }

(−1)2ξm(at
12,m+ia
ij )

{Ee}{F}
{aA}{bB} (gEsEs )

r ′0(S E ′′s
Es

)r [(S · η̄4)Es ]
r ′2(

G
ij |m+`|kl
(`′−`+2r ′3,na−`,n′3,n′4,n′5)

)E ′′s r′′1 F ′′4ξmF ′′nb−`+ibF ′′`t−ib+jb

F na−`+iaE
r′
1

s

(η̄E2 )`t−ia+ja

(ΓF ′′ η̄3 · ΓSn
m
v +`t Q̂Nm+`te1

13|t ΓF ′′)
(E ′′s

ib−jbE ′′`t−ib+jb )E ′′n
m
v e′′

eEnmv (E `t−ia+jaE ia−ja
s )

[(η̄2 · S)E
′′
s ]r
′′
2 (gE ′′s E ′′s )r

′′
0 (bt

34
kl ,m+ib

){cC}{dD}{e′′E ′′}{F ′′}(A34E ′′F ′′)
`t−ib+jb



Main Elements

Gegenbauer polynomials C
(λ)
n (X ) in the special variable

X =
(α4 − α2)x4 − (α3 − α2)x3

2
, x3 =

u

v
, x4 = u

G
ij |m+`|kl
(n1,n2,n3,n4,n5)A1···An

− related to tensorial generalization of

Exton G function that appears in 〈SSSS〉 scalar exchange
blocks

G
ij |m+`|kl
(n1,n2,n3,n4,n5)A1···An

totally symmetric in all of its indices



Main Elements (cont.)

Special combination of G s is ubiquitous:

S B
A = g B

A G
ij |m+`|kl
(0,0,0,0,0) − G

ij |m+`|kl
(0,0,2,0,0)Aη̄

B
1

−η̄3A(G
ij |m+`|kl
(0,0,2,2,0))B + (G

ij |m+`|kl
(0,0,4,2,0)) B

A

Appears either by itself or via contractions with embedding
space coordinates η̄2, η̄4, e.g. as in (η̄2 · S)E

′′
s , (S · η̄4)Es

ΓF ′′s, η̄3 · Γ present only if exchanged operator is fermionic,
ξm = 1

2

Special part Q̂Nm+`te1

13|t of projector P̂Nm+`e1
13 contracts with

G s, Ss, and tensor structures



Properties of G

Substitution rules necessitate the multiplication of several G ’s
according to

G
ij |m+`|kl
(n1,n2,n3,n4,n5)AnG

ij |m+`|kl
(m1,m2,m3,m4,m5)Bm

= G
ij |m+`|kl
(n1+m1,n2+m2,n3+m3,n4+m4,n5+m5)AnBm

Moreover, G satisfies the contiguous relations

g · G ij |m+`|kl
(n1,n2,n3,n4,n5) = 0,

η̄1 · G ij |m+`|kl
(n1,n2,n3,n4,n5) = G

ij |m+`|kl
(n1,n2,n3−2,n4,n5),

η̄2 · G ij |m+`|kl
(n1,n2,n3,n4,n5) = G

ij |m+`|kl
(n1+2,n2,n3,n4,n5),

η̄3 · G ij |m+`|kl
(n1,n2,n3,n4,n5) = G

ij |m+`|kl
(n1,n2,n3−2,n4−2,n5),

η̄4 · G ij |m+`|kl
(n1,n2,n3,n4,n5) = G

ij |m+`|kl
(n1,n2,n3−2,n4,n5+2)

Useful for facilitating contractions



Example: `e1 Exchange in 〈SVSV 〉

With the aid of diagrams, it is easy to extract indices as needed



Example: `e1 Exchange in 〈SVSV 〉 (cont.)

These directly lead to four conformal blocks expressed in terms of
Gegenbauer polynomials

G ij|m+`|kl
(1|1] =

`!

(d/2− 1)`

(
C

(d/2−1)
` (X )

)
s1
(1|1)

,

G ij|m+`|kl
(1|2] = − (`− 1)!

(d/2)`−1

(
C

(d/2)
`−1 (X )

)
s1
(1|2)

+
(`− 1)!

(d/2)`−1

(
C

(d/2)
`−2 (X )

)
s2
(1|2)

,

G ij|m+`|kl
(2|1] = − (`− 1)!

(d/2)`−1

(
C

(d/2)
`−1 (X )

)
s1
(2|1)

+
(`− 1)!

(d/2)`−1

(
C

(d/2)
`−2 (X )

)
s2
(2|1)

,

G ij|m+`|kl
(2|2] =

(`− 1)!

`(d/2 + 1)`−2

(
C

(d/2+1)
`−2 (X )

)
s1
(2|2)

− (`− 1)!

`(d/2 + 1)`−2

(
C

(d/2+1)
`−3 (X )

)
s2
(2|2)

− (`− 1)!

`(d/2 + 1)`−2

(
C

(d/2+1)
`−3 (X )

)
s3
(2|2)

− (`− 1)!

`(d/2)`−1

(
C

(d/2)
`−2 (X )

)
s4
(2|2)

+
(`− 1)!

`(d/2 + 1)`−2

(
C

(d/2+1)
`−4 (X )

)
s5
(2|2)

+
(`− 1)!

`(d/2)`−1

(
C

(d/2)
`−1 (X )

)
s6
(2|2)

.



Example: `e1 Exchange in 〈SVSV 〉 (cont.)

A specific substitution rule is ascribed to each Gegenbauer term.
For example,

s1
(1|1) : αs2

2 α
s3
3 α

s4
4 x r3

3 x r4
4 → G

ij |m+`|kl
(0,1,3,1,−1)BD ,

s1
(1|2) : αs2

2 α
s3
3 α

s4
4 x r3

3 x r4
4 → (η̄2 · S)DG

ij |m+`|kl
(−1,1,0,0,0)B ,

s1
(2|1) : αs2

2 α
s3
3 α

s4
4 x r3

3 x r4
4 → (S · η̄4)BG

ij |m+`|kl
(−1,−1,2,0,−2)D ,

s2
(2|1) : αs2

2 α
s3
3 α

s4
4 x r3

3 x r4
4 → G

ij |m+`|kl
(−2,−1,3,1,−1)BD



Example: `e1 Exchange in 〈SVSV 〉 (cont.)

Rotation matrix for this case:

(R−1
ij ,m+`)1,1 = 1κ

ij |m+`
(0,0,0,0,0,0,0,1,0) + 1κ

ij |m+`
(0,0,0,1,0,0,0,0,0),

(R−1
ij ,m+`)1,2 = 1κ

ij |m+`
(0,0,0,0,0,0,1,0,0) + 1κ

ij |m+`
(0,0,0,0,0,0,1,0,1),

(R−1
ij ,m+`)2,1 = −2κ

ij |m+`
(0,0,1,0,0,0,0,1,0) − 2κ

ij |m+`
(0,0,1,0,0,1,0,0,0)

−1

2
2κ

ij |m+`
(0,0,1,1,0,0,0,0,0),

(R−1
ij ,m+`)2,2 = 2κ

ij |m+`
(0,0,0,0,1,0,0,0,0) − 2κ

ij |m+`
(0,0,1,0,0,0,1,0,0)

−2κ
ij |m+`
(0,0,1,0,0,0,1,0,1) + 2κ

ij |m+`
(1,0,0,0,0,0,0,0,0)



Example: e r + `e1 Exchange in 〈SFSF 〉

Projection operator to er + `e1:

t (dt , `t) At(d , `) Q̂t

1 (2, 0) 1 δ α′
α

2 (2, 1) `
2(−`+1−d/2) (γµγ

µ′) α′
α

Since ia = ib = 0 for all tensor structures, no need to extract any
indices

∀ a, b : A1Q̂er

13|1P̂
`e1

13|d+2 + A2Q̂er+e1

13|2 P̂
(`−1)e1

13|d+2

= A1Q̂er

13|1 × + A2Q̂er+e1

13|2 ×



Example: e r + `e1 Exchange in 〈SFSF 〉 (cont.)

All four different blocks have the same form:

∀ a, b : G
ij |m+`|kl
(a|b] =

`!

(d/2)`

(
C

(d/2)
` (X )

)
s1

(a|b)

+
`!

2(d/2)`

(
C

(d/2)
`−1 (X )

)
s2

(a|b)

But different substitution rules due to the tensor structures and
the different values of na and nb, e.g.

s1
(1|1) : αs2

2 α
s3
3 α

s4
4 x r3

3 x r4
4 → −(ΓF ′′ η̄3 · Γ ΓF ′′C

−T
Γ )bd

(
G

ij |m+`|kl
(0,0,4,3,−1)

)F ′′2
= −2(ΓF ′′C

−T
Γ )bd

(
G

ij |m+`|kl
(0,0,2,1,−1)

)F ′′



Example: e r + `e1 Exchange in 〈SFSF 〉 (cont.)

Rotation matrix for this case:

(R−1
ij ,m+`)1,1 = 0,

(R−1
ij ,m+`)1,2 = (−1)r 1κ

ij |m+`
(0,0,1,0,0,0,0,0,0),

(R−1
ij ,m+`)2,1 = (−1)r+1

[
2κ

ij |m+`
(0,0,1,0,0,0,0,1,0) −

1

2
2κ

ij |m+`
(0,0,1,0,0,0,1,0,0)

−1

2
2κ

ij |m+`
(0,0,1,0,0,0,1,0,1) + 2κ

ij |m+`
(0,0,1,1,0,0,0,0,0)

+d2κ
ij |m+`
(1,0,0,0,0,0,0,0,0)

]
,

(R−1
ij ,m+`)2,2 = 0.

where r is the rank of the Lorentz group



Conclusions and Outlook

Established a set of efficient rules for determining all possible
four-point conformal blocks in the context of embedding
space OPE formalism

Require knowledge of fundamental group theoretic quantities:
projection operators of external and exchanged quasi-primary
operators

Projectors imply two tensor structures for left

(at
12,m+`
ij )

{Ee}{F}
{aA}{bB} and right

(bt
34
kl ,m+`){cC}{dD}{e′′E ′′}{F ′′} OPE

Input data: Projection operators and tensor structures

Rules allow us to generate global conformal blocks for any
exchanged Lorentz representation



Conclusions and Outlook (cont.)

Conformal blocks given in terms of linear combinations of
Gegenbauer polynomials in a specific variable X , coupled with
associated substitution rules

Introduced diagrammatic notation to easily determine
appropriate linear combinations of Gegenbauer polynomials

Blocks have simplest form in the mixed OPE-three-point basis

For bootstrap, need to change to pure three-point basis ⇒
rotation matrices

In future: Use these rules to derive blocks for 4-point
functions of conserved currents and energy-momentum tensors
and other operators of theoretical interest



THANK YOU!



Backup Slides



What is a CFT?

A CFT is invariant under the conformal group SO(1, d − 1):

Poincaré algebra

dilatations

special conformal
transformations

Conformal algebra:

[Mµν ,Mλρ] = −(sµν) δ
λ Mδρ − (sµν) δ

ρ Mλδ,

[Mµν ,Pλ] = −(sµν) ρ
λ Pρ, [Mµν ,Kλ] = −(sµν) ρ

λ Kρ,

[Pµ,D] = iPµ, [Kµ,D] = −iKµ, [Pµ,Kν ] = 2i(gµνD −Mµν)

where

(sµν)λρ = i(δ λ
µ δ ρ

ν −δ ρ
µ δ λ

ν ), [sµν , sλρ] = −(sµν) λ′
λ sλ′ρ−(sµν) ρ′

ρ sλρ′



The Spectrum of Operators

Two kinds of operators in CFTs:

quasi-primaries [Kµ,O(x)(0)] = 0: transform simply under
conformal transformations, e.g.

x → x ′, O(x)(x)→ Õ(x)(x ′) = b(x)−∆O(x)(x)

descendants: don’t!

Complete spectrum of operators: primaries+infinite towers of
descendants

Organic observables in CFTs: M-point correlation functions of
operators, 〈O(x)(x1) . . .O(x)(xM)〉



The Embedding Space

Embedding space Md+2:

A natural habitat for the conformal group:
(d + 2)-dimensional hypercone where operators live

η2 ≡ gABη
AηB = 0

Light rays in one-to-one correspondence with position space
points



The Embedding Space (cont.)

Coordinates on the hypercone:

ηA = (ηµ, ηd+1, ηd+2)

ληA identified with ηA for λ > 0

Connection to position space:

xµ =
ηµ

−ηd+1 + ηd+2

In the embedding space,

Conformal transformations act linearly: Conformal group
becomes like Lorentz group!

All operators in d-dimensional CFT need to somehow be lifted
to Md+2.



A New Uplift

Uplift based on quasi-primary operators with spinor indices only
and standard projection operators (Fortin & Skiba (2019))

Idea:

Start with a quasi-primary operator in position space O(x) in a
general irrep of SO(1, d − 1): NO = {NO1 , . . . ,NOr }

Lift it to a quasi-primary O in the embedding space in an
irrep of SO(2, d): NOE = {0,NO1 , . . . ,NOr }

exact for the defining representations,

true in general up to the removal of traces



A New Uplift (cont.)

With this,

Scalars uplift to scalars, spinors to spinors, i-index
antisymmetric tensors to (i+1)-index antisymmetric tensors

Advantage: Approach treats fermions and bosons on an equal
footing

From the perspective of the Dynkin indices, everything looks the
same!

Uplift makes universal treatment of all quasi-primary operators
in arbitrary irreps of the Lorentz group possible.



The OPE Differential Operator: A Bit of Background

Seek most useful differential operator aDk
ij (η1, η2) for quasi-primary

operators in general irreducible representations of the Lorentz
group.

What are our options?

Only consistent first order operators:

Θ = ηA
∂

∂ηA
, LAB = i

(
ηA

∂

∂ηB
− ηB

∂

∂ηA

)
Unique consistent second order operator: Thomas-Todorov

KA =

(
ηB

∂

∂ηB
+

d

2

)
∂

∂ηA
− 1

2
ηA

∂

∂ηB

∂

∂ηB



A Brief History of the OPE Differential Operator

Θ doesn’t work: Cannot generate descendants!

Left with:

LAB
KA

(L2)AB

With two embedding space coordinates ηi and ηj , only one
independent operator well-defined on the lightcone!



A Brief History of the OPE Differential Operator

Inspired by Ferrara et al. (1971, 1972, 1973),

Candidate OPE differential operator:

DA
ij ≡

1

(ηi · ηj)
1
2

[−i(ηi · Lj)A − ηAi Θj ] = (ηi · ηj)
1
2AAB

ij ∂jB

D2
ij ≡ DA

ijDijA = (ηi · ηj)∂2
j − ηi · ∂j(dE − 4 + 2Θj)

= (ηi · ηj)∂2
j − (dE − 2 + 2Θj)ηi · ∂j



A Brief History of the OPE Differential Operator

Candidate has many nice properties!

Notably,

[DA
ij ,D2h

ij ] =
2h

(ηi · ηj)
1
2

ηAi D
2h
ij ,

[Θi ,D2h
ij ] = hD2h

ij , [Θj ,D2h
ij ] = −hD2h

ij ,

D2h
ij η

A
j − η

A
j D

2h
ij = 2h(ηi · ηj)

1
2DA

ijD
2(h−1)
ij − h(d + 2h − 2)ηAi D

2(h−1)
ij

But difficult to work with!



An OPE Differential Operator

Motivated by last commutation relation, instead find

Winning candidate

DA
ij |h =

ηAj

(ηi · ηj)
1
2

D2
ij + 2hDA

ij − h(d + 2h − 2)
ηAi

(ηi · ηj)
1
2

Embedding space OPE differential operator

D(d ,h,n)A1···An

ij ≡ DAn

ij |h+n · · · D
A1

ij |h+1D
2h
ij =

1

(ηi · ηj)
n
2

D2(h+n)
ij ηA1

j · · · η
An
j

Fortin, Skiba (2019)



An OPE Differential Operator

Properties:

well-defined on the lightcone

fully symmetric and traceless with respect to embedding space
metric gAB

satisfies simple contiguous relations

very convenient, as evident from

D(d ,h,n)A1···An

ij η
An+1

j · · · ηAn+k

j = (ηi · ηj)
k
2D(d ,h−k,n+k)A1···An+k

ij

=
1

(ηi · ηj)
n
2

D(d ,h+n,0)
ij ηA1

j · · · η
An+k

j .

Fractional derivative ⇒ a sort of analytic continuation



A Special Tensorial Function

Enter a special tensorial object:

I
(d ,h,n;p)A1···An

ij = D(d ,h,n)A1···An

ij

∏
a 6=i ,j

1

(ηj · ηa)pa

Naturally arises in computation of M-point correlation functions!

Fortin, Skiba (2019)



A Special Tensorial Function (cont.)

In terms of homogeneized coordinates η̄i :

Ī
(d ,h,n;p)
ij ;k` = (−2)h(p̄)h(p̄ + 1− d/2)hx

p̄+h
m∑

{qr}≥0
q̄=n

S(q)x
q̄−q0−qi
m K

(d ,h;p;q)
ij ;k`;m (xm; y ; z),

where

S
A1···Aq̄

(q) = g (A1A2 · · · gA2q0−1A2q0 η̄
A2q0+1

1 · · · η̄A2q0+q1
1 · · · η̄Aq̄−qM+1

M · · · η̄Aq̄)
M

with q̄ = 2q0 +
∑

r≥1 qr
It’s totally symmetric in all of its indices!



It’s all in Ī !

Ī
(d ,h,n;p)
ij ;k` satisfies some convenient contiguous relations:

g · Ī (d ,h,n;p)
ij ;k` = 0,

η̄i · Ī
(d ,h,n;p)
ij ;k` = Ī

(d ,h+1,n−1;p)
ij ;k` ,

η̄j · Ī
(d ,h,n;p)
ij ;k` = (−2)(−h − n)(−h − n + 1− d/2)Ī

(d ,h,n−1;p)
ij ;k` ,

η̄a · Ī (d ,h,n;p)
ij ;k` = Ī

(d ,h+1,n−1;p−ea)
ij ;k`

Upshot: We know the exact action of the embedding space
differential operator for any quantity of interest!



Tensor Structures (cont.)

Set of all at
12
ijk forms basis for a vector space

Equivalently, seen as intertwiners contracting four irreps into a
singlet:

at
12
ijk = (P̂N i

12 )(P̂N j

21 )(P̂Nk
12 )(P̂nae1

21 ) · at12
ijk

Fourth representation: Symmetric traceless

Purpose: To restrict the at
12
ijk onto the appropriate irreps N i ,

N j , Nk , and nae1


