Efficient Rules for All Conformal Blocks: A Dream Come True

Valentina Prilepina

Département de Physique, de Génie Physique et d'Optique Université Laval, Québec, QC G1V 0A6, Canada

> May 27, 2020
> ITMP
> based on
> arXiv:2002.09007 [hep-ph]

Also see: arXiv:1905.00036 [hep-ph], arXiv:1906.12349 [hep-ph] arXiv:1907.08599 [hep-ph], arXiv:1907.10506 [hep-ph]
with Jean-François Fortin, Wen-Jie Ma, and Witold Skiba

Why Study Conformal Field Theories (CFTs)?

CFTs describe universal physics of scale invariant critical points:

- continuous phase transitions in condensed matter and statistical systems
- fixed points of RG flows

Provide a handle on

- Universal structure of the landscape of QFTs
- Quantum gravity via the AdS/CFT correspondence and holography
- String theory
- Black holes

The Conformal Bootstrap

The conformal bootstrap program seeks to systematically apply

- conformal symmetry
- crossing symmetry
- unitarity/reflection positivity conditions to map out and solve the space of allowed CFTs

Figure: Allowed region for 3D Ising Model [El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, '12; '14]

The Ultimate Dream

- Tremendous progress both on the numerical and analytic fronts! e.g. Ferrara et al. (1971, 1973), Dobrev et al. (1976, 1977), Polyakov (1974), Dolan \& Osborn (2001, 2004, 2011), Poland et al. (2012), Simmons-Duffin (2014), El-Showk et al. (2014), Kos et al. (2014, 2015, 2016), Costa \& Hansen (2015), Rejon-Barrera \& Robbins (2016), Echeverri et al. (2016), Costa et al. (2016), Fortin \& Skiba (2016, 2019), Karateev et al. (2017), Poland \& Simmons-Duffin (2019)
- Dream: to classify and solve the entire landscape of CFTs and predict their observables

CFTs are signposts in the landscape of QFTs!

The Ultimate Dream (cont.)

QFTs: Renormalization group flows from UV to IR fixed points

- Large classes of QFTs as relevant deformations of small subset of CFTs

Outline: Part I

Part I: Setting the Stage

- A Little Bit of Background on CFTs
- Goal: Efficient Rules for Arbitrary Conformal Blocks
- Embedding Space OPE Formalism
- Three- and Four-Point Functions
- Bases of Tensor Structures

Outline: Part II

Part II: The Rules

- Tensor Structures for Towers of Exchanged Operators
- Projection Operators to Exchanged Representations
- Diagrammatic Notation
- Rule for Rotation Matrices
- Rule for Conformal Blocks
- Examples
- Conclusions and Outlook

What is a CFT?

A special quantum field theory invariant under the conformal transformations:

$$
g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=c(x) \delta_{\mu \nu}
$$

Jacobian:

$$
J=\frac{\partial x^{\prime \mu}}{\partial x^{\nu}}=b(x) M_{\nu}^{\mu}(x), \quad M \in S O(d)
$$

- Preserve angles
- Locally look like a rotation followed by a scale transformation $x \rightarrow \lambda x$

The Spectrum of Operators

Two kinds of operators in CFTs:

- quasi-primaries $\left[K_{\mu}, \mathcal{O}^{(x)}(0)\right]=0$: transform simply under conformal transformations, e.g.

$$
x \rightarrow x^{\prime}, \quad \mathcal{O}^{(x)}(x) \rightarrow \tilde{\mathcal{O}}^{(x)}\left(x^{\prime}\right)=b(x)^{-\Delta} \mathcal{O}^{(x)}(x)
$$

- descendants: don't!
- Complete spectrum of operators: primaries+infinite towers of descendants
- Organic observables in CFTs: M-point correlation functions of operators, $\left\langle\mathcal{O}^{(x)}\left(x_{1}\right) \ldots \mathcal{O}^{(x)}\left(x_{M}\right)\right\rangle$

What are Conformal Blocks?

- Well-defined objects appearing in expansion of the four-point functions
- Capture contributions of particular exchanged operators in the OPE
- Similar to an expansion in spherical harmonics Y_{ℓ}^{m} but for CFTs

Conformal Bootstrap

Impose crossing symmetry

Interchanging $x_{1} \leftrightarrow x_{3}$ gives the crossing symmetry condition:

$$
\sum_{\Delta, \ell} \lambda_{\mathcal{O}}^{2} g_{\Delta, \ell}(u, v)=\sum_{\Delta, \ell} \lambda_{\mathcal{O}}^{2} g_{\Delta, \ell}(v, u)
$$

Our Goal

Goal: Efficient Rules for Arbitrary Conformal Blocks

- Approach based on embedding space OPE formalism given in Fortin, VP, Skiba (2019)
- Conformal blocks expressed as specific linear combinations of Gegenbauer polynomials in a special variable, with a unique substitution rule ascribed to each polynomial piece
- Applying each rule term-by-term directly generates the complete conformal block in terms of a four-point tensorial generalization of the Exton G-function (\propto scalar exchange block in $\langle S S S S\rangle$)

Our Goal (cont.)

Procedure for determining a given block:
(1) Writing down the relevant group theoretic input data: the projection operators and tensor structures
(2) Identifying the specific linear combination of Gegenbauer polynomials along with the associated substitution rules for each piece
In this work: Wish to make this approach systematic \Rightarrow Derive a set of general rules

Embedding Space OPE

Replace the product of two local quasi-primary operators by an infinite sum of operators at some point on the lightcone:

$$
\begin{gathered}
\mathcal{O}_{i}\left(\eta_{1}\right) \mathcal{O}_{j}\left(\eta_{2}\right)=\left(\mathcal{T}_{12}^{\boldsymbol{N}_{i}} \Gamma\right)\left(\mathcal{T}_{21}^{\boldsymbol{N}_{j}} \Gamma\right) \cdot \sum_{k} \sum_{a=1}^{N_{i j k}} \frac{{ }_{a} c_{i j}{ }^{k}{ }_{a} t_{i j}^{12 k}}{\left(\eta_{1} \cdot \eta_{2}\right)^{p_{i j k}}} \\
\cdot \mathcal{D}_{12}^{\left(d, h_{i j k}-n_{a} / 2, n_{a}\right)}\left(\mathcal{T}_{12 \boldsymbol{N}_{k}} \Gamma\right) * \mathcal{O}_{k}\left(\eta_{2}\right)
\end{gathered}
$$

where

$$
\begin{gathered}
p_{i j k}=\frac{1}{2}\left(\tau_{i}+\tau_{j}-\tau_{k}\right), \quad h_{i j k}=-\frac{1}{2}\left(\chi_{i}-\chi_{j}+\chi_{k}\right), \\
\tau_{\mathcal{O}}=\Delta_{\mathcal{O}}-S_{\mathcal{O}}, \quad \chi_{\mathcal{O}}=\Delta_{\mathcal{O}}-\xi_{\mathcal{O}}, \quad \xi_{\mathcal{O}}=S_{\mathcal{O}}-\left\lfloor S_{\mathcal{O}}\right\rfloor
\end{gathered}
$$

- Most convenient form for computing M-point correlation functions

The Embedding Space

Embedding space \mathcal{M}^{d+2} :

- A natural habitat for the conformal group: $(d+2)$-dimensional hypercone where operators live

$$
\eta^{2} \equiv g_{A B} \eta^{A} \eta^{B}=0
$$

- Light rays in one-to-one correspondence with position space points

The Embedding Space (cont.)

Coordinates on the hypercone:

$$
\eta^{A}=\left(\eta^{\mu}, \eta^{d+1}, \eta^{d+2}\right)
$$

- $\lambda \eta^{A}$ identified with η^{A} for $\lambda>0$

Connection to position space:

$$
x^{\mu}=\frac{\eta^{\mu}}{-\eta^{d+1}+\eta^{d+2}}
$$

In the embedding space,

- Conformal transformations act linearly: Conformal group becomes like Lorentz group!
- All operators in d-dimensional CFT need to somehow be lifted to \mathcal{M}^{d+2}.

Essential Ingredients of the Formalism

- OPE differential operator $\mathcal{D}_{12}^{\left(d, h_{i j k}-n_{a} / 2, n_{\mathrm{a}}\right)}$
- Projection operators $\hat{\mathcal{P}}_{i j}^{N}$
- Half-projection operators $\mathcal{T}_{12}^{N_{i}} \Gamma$
- Tensor structures ${ }_{a} t_{i j}^{12 k}$
- Special metric $\mathcal{A}_{i j}^{A B}$

OPE differential operator

OPE differential operator $\mathcal{D}_{12}^{\left(d, h_{j j k}-n_{a} / 2, n_{a}\right)}$ given by

$$
\begin{gathered}
\mathcal{D}_{i j}^{(d, h, n) A_{1} \cdots A_{n}}=\frac{1}{\left(\eta_{1} \cdot \eta_{2}\right)^{\frac{n}{2}}} \mathcal{D}_{i j}^{2(h+n)} \eta_{j}^{A_{1}} \cdots \eta_{j}^{A_{n}}, \\
\mathcal{D}_{i j}^{2}=\left(\eta_{i} \cdot \eta_{j}\right) \partial_{j}^{2}-\left(d+2 \eta_{j} \cdot \partial_{j}\right) \eta_{i} \cdot \partial_{j}
\end{gathered}
$$

- Explicit action of this operator known for any relevant quantity!
- Consequence: Its action can be accounted for by simple substitution rules on specific quantities
- Useful for computation of conformal blocks

Ferrara et al. (1971, 1973), Fortin, Skiba (2019)

Projection Operators

- Projection operators: $\hat{\mathcal{P}}_{i j}^{N}$ in place to restrict operators to the proper representations

Operators satisfy the essential properties:
(1) the projection property $\hat{\mathcal{P}}^{\boldsymbol{N}} \cdot \hat{\mathcal{P}}^{\boldsymbol{N}^{\prime}}=\delta_{\boldsymbol{N}^{\prime} \boldsymbol{N}} \hat{\mathcal{P}}^{\boldsymbol{N}}$,
(2) the completeness relation $\sum_{N \mid n_{v} \text { fixed }} \hat{\mathcal{P}}^{\boldsymbol{N}}=\mathbb{1}$ - traces,
(3) the tracelessness condition

$$
g \cdot \hat{\mathcal{P}}^{N}=\gamma \cdot \hat{\mathcal{P}}^{N}=\hat{\mathcal{P}}^{N} \cdot g=\hat{\mathcal{P}}^{N} \cdot \gamma=0
$$

with n_{v} the total number of vector indices

Half-Projection Operators

- Half-projection operators $\left(\mathcal{T}^{N}\right)_{\alpha_{1} \cdots \alpha_{n}}^{\mu_{1} \cdots \mu_{n_{v}} \delta}$ to general irreps \boldsymbol{N}

$$
n=2 S=2 \sum_{i=1}^{r-1} N_{i}+N_{r}, \quad n_{v}=\sum_{i=1}^{r-1} i N_{i}+r\left\lfloor N_{r} / 2\right\rfloor
$$

- δ spinor index only present for odd N_{r} in odd d
- Encode transformation properties of operators $\mathcal{O}^{N}, \mathcal{O}^{N} \sim \mathcal{T}^{N}$

$$
\begin{gathered}
\mathcal{O}_{\alpha_{1} \cdots \alpha_{n}}^{N}=\left(\mathcal{T}^{N}\right)_{\alpha_{1} \cdots \alpha_{n}}^{\delta \mu_{n_{v}} \cdots \mu_{1}} \mathcal{O}_{\mu_{1} \cdots \mu_{n_{v}} \delta}^{N}, \\
\mathcal{O}_{\mu_{1} \cdots \mu_{n_{v}} \delta}^{N}=\left(\mathcal{T}_{\boldsymbol{N}}\right)_{\mu_{1} \cdots \mu_{n_{v}} \delta}^{\alpha_{n} \cdots \alpha_{1}} \mathcal{O}_{\alpha_{1} \cdots \alpha_{n}}^{N}
\end{gathered}
$$

Half-Projection Operators (cont.)

- Essentially square roots of projection operators:

$$
\mathcal{T}_{N} * \mathcal{T}^{N}=\hat{\mathcal{P}}^{N}
$$

- Are transverse objects to match the transversality of operators
- Serve to translate the spinor indices carried by each operator to "dummy" vector and spinor indices

Tensor Structures

Tensor structures a $t_{i j k}^{12}$ are

- Determined by three irreps of operators in 3-point function $\left\langle\mathcal{O}^{\boldsymbol{N}_{i}} \mathcal{O}^{\boldsymbol{N}_{j}} \mathcal{O}^{\boldsymbol{N}_{k}}\right\rangle$
- Serve to intertwine $\boldsymbol{N}_{i}, \boldsymbol{N}_{j}$, and \boldsymbol{N}_{k} into a symmetric traceless representation
- Number $N_{i j k}$ of symmetric irreducible representations appearing in $\boldsymbol{N}_{\boldsymbol{i}} \otimes \boldsymbol{N}_{j} \otimes \boldsymbol{N}_{k}$ matches number of OPE coefficients
- Set of all ${ }_{a} t_{i j k}^{12}$ forms basis for a vector space

Embedding Space Metric

For general irreps of the Lorentz group, necessary to properly remove traces!

- For this, require a new embedding space metric:

$$
\mathcal{A}_{i j}^{A B}=g^{A B}-\frac{\eta_{i}^{A} \eta_{j}^{B}}{\left(\eta_{i} \cdot \eta_{j}\right)}-\frac{\eta_{i}^{B} \eta_{j}^{A}}{\left(\eta_{i} \cdot \eta_{j}\right)}
$$

Embedding Space Metric (cont.)

Special metric is doubly-transverse and symmetric:

$$
\begin{gathered}
\mathcal{A}_{i j}^{A B}=\mathcal{A}_{i j}^{B A}=\mathcal{A}_{j i}^{A B}=\mathcal{A}_{j i}^{B A}, \\
\eta_{i A} \mathcal{A}_{i j}^{A B}=\eta_{j A} \mathcal{A}_{i j}^{A B}=0, \\
\mathcal{A}_{i j}^{A C} \mathcal{A}_{i j C}{ }^{B}=\mathcal{A}_{i j}^{A B},
\end{gathered}
$$

Same trace as in position space:

$$
\mathcal{A}_{i j A}^{A}=d
$$

From Position Space to Embedding Space

Building blocks:

- $g^{\mu \nu}$
- $\epsilon^{\mu_{1} \cdots \mu_{d}}$
- $\gamma^{\mu_{1} \cdots \mu_{n}}$

Relationship between position-space and embedding space quantities:

$$
\begin{gathered}
g^{\mu \nu} \rightarrow \mathcal{A}_{12}^{A B}=g^{A B}-\frac{\eta_{1}^{A} \eta_{2}^{B}}{\left(\eta_{1} \cdot \eta_{2}\right)}-\frac{\eta_{1}^{B} \eta_{2}^{A}}{\left(\eta_{1} \cdot \eta_{2}\right)}, \\
\epsilon^{\mu_{1} \cdots \mu_{d}} \rightarrow \epsilon_{12}^{A_{1} \cdots A_{d}}=\frac{1}{\left(\eta_{1} \cdot \eta_{2}\right)} \eta_{1 A_{0}^{\prime}} \epsilon_{0}^{A_{0}^{\prime} A_{1}^{\prime} \cdots A_{d}^{\prime} A_{d+1}^{\prime} \eta_{2 A_{d+1}^{\prime}} \mathcal{A}_{12 A_{d}^{\prime}}^{A_{d}} \cdots \mathcal{A}_{12 A_{1}^{\prime}}^{A_{1}},} \\
\gamma^{\mu_{1} \cdots \mu_{n}} \rightarrow \Gamma_{12}^{A_{1} \cdots A_{n}}=\Gamma_{A_{1}^{\prime} \cdots A_{n}^{\prime}}^{\mathcal{A}_{12 A_{n}^{\prime}}^{A_{n}} \cdots \mathcal{A}_{12 A_{1}^{\prime}}^{A_{1}} \quad \forall n \in\{0, \ldots, r\} .} .
\end{gathered}
$$

Three-Point Correlation Functions

Most general embedding space 3-point function:

$$
\begin{gathered}
\left\langle\mathcal{O}_{i}\left(\eta_{1}\right) \mathcal{O}_{j}\left(\eta_{2}\right) \mathcal{O}_{m}\left(\eta_{3}\right)\right\rangle= \\
\frac{\left(\mathcal{T}_{12}^{N_{i}} \Gamma\right)^{\{A a\}}\left(\mathcal{T}_{21}^{N_{j}} \Gamma\right)^{\{B b\}}\left(\mathcal{T}_{31}^{N_{m}} \Gamma\right)^{\{E e\}}}{\left(\eta_{1} \cdot \eta_{2}\right)^{\frac{1}{2}\left(\tau_{i}+\tau_{j}-\chi_{m}\right)}\left(\eta_{1} \cdot \eta_{3}\right)^{\frac{1}{2}\left(\chi_{i}-\chi_{j}+\tau_{m}\right)}\left(\eta_{2} \cdot \eta_{3}\right)^{\frac{1}{2}\left(-\chi_{i}+\chi_{j}+\chi_{m}\right)}} \\
\cdot \sum_{a=1}^{N_{i j m}}{ }_{a} c_{i j m}\left(\mathscr{G}_{(a \mid}^{i j \mid m}\right)_{\{a A\}\{b B\}\{e E\}}
\end{gathered}
$$

- $\left(\mathscr{G}_{(a \mid}^{i j \mid m}\right)_{\{a A\}\{b B\}\{e E\}}$ - "3-point" conformal blocks

Four-Point Correlation Functions

Most general embedding space 4-point function:

$$
\begin{gathered}
\left\langle\mathcal{O}_{i}\left(\eta_{1}\right) \mathcal{O}_{j}\left(\eta_{2}\right) \mathcal{O}_{k}\left(\eta_{3}\right) \mathcal{O}_{l}\left(\eta_{4}\right)\right\rangle= \\
\frac{\left(\mathcal{T}_{12}^{\boldsymbol{N}_{i}} \Gamma\right)^{\{A a\}}\left(\mathcal{T}_{21}^{\boldsymbol{N}_{j}} \Gamma\right)^{\{B b\}}\left(\mathcal{T}_{34}^{\boldsymbol{N}_{k}} \Gamma\right)^{\{C c\}}\left(\mathcal{T}_{43}^{\boldsymbol{N}_{I}} \Gamma\right)^{\{D d\}}}{\left(\eta_{1} \cdot \eta_{2}\right)^{\frac{1}{2} \alpha_{12}}\left(\eta_{1} \cdot \eta_{3}\right)^{\frac{1}{2} \alpha_{13}}\left(\eta_{1} \cdot \eta_{4}\right)^{\frac{1}{2} \alpha_{14}}\left(\eta_{3} \cdot \eta_{4}\right)^{\frac{1}{2} \alpha_{34}}} \\
\cdot \sum_{m} \sum_{a=1}^{N_{i j m}} \sum_{b=1}^{N_{k l m}}{ }_{a} c_{i j}{ }^{m}{ }_{b} \alpha_{k l m}\left(\mathscr{G}_{(a \mid b]}^{i j|m| k l}\right)_{\{a A\}\{b B\}\{c C\}\{d D\}}
\end{gathered}
$$

with

$$
\begin{array}{cc}
\alpha_{12}=\left(\tau_{i}-\chi_{i}+\tau_{j}+\chi_{j}\right), & \alpha_{13}=\left(\chi_{i}-\chi_{j}+\chi_{k}-\chi_{I}\right), \\
\alpha_{14}=\left(\chi_{i}-\chi_{j}-\chi_{k}+\chi_{I}\right), & \alpha_{34}=\left(-\chi_{i}+\chi_{j}+\tau_{k}+\tau_{l}\right)
\end{array}
$$

- $\left(\mathscr{G}_{(a \mid b]}^{i j|m| k l}\right)_{\{a A\}\{b B\}\{c C\}\{d D\}}$ - "4-point" conformal blocks

Bases of Tensor Structures

Two kinds of bases arise naturally in the context of the formalism:
(1) OPE basis (a
(2) Three-point basis [a

Three-point blocks in the two bases related via rotation matrices

$$
\mathscr{G}_{(a \mid}^{i j \mid m}=\sum_{a^{\prime}=1}^{N_{i j m}}\left(R_{i j m}^{-1}\right)_{a a^{\prime}} \mathscr{G}_{\left[a^{\prime} \mid\right.}^{i j \mid m}, \quad{ }_{a} c_{i j m}=\sum_{a^{\prime}=1}^{N_{i j m}}{ }_{a^{\prime}} \alpha_{i j m}\left(R_{i j m}\right)_{a^{\prime} a}
$$

where ${ }_{a} \alpha_{i j m}$ are the associated 3-point function coefficients, implying

$$
\sum_{a=1}^{N_{i j m}}{ }_{a} c_{i j m} \mathscr{G}_{(a \mid}^{i j \mid m}=\sum_{a=1}^{N_{i j m}}{ }_{a} \alpha_{i j m} \mathscr{G}_{[a \mid}^{i j \mid m}
$$

Bases of Tensor Structures (cont.)

- Three-point basis [a is the natural one for 3-point functions!
- 3-point conformal blocks in this basis:

$$
\mathscr{G}_{[a \mid}^{i j \mid m}=\bar{\eta}_{3} \cdot \Gamma_{a} F_{i j m}^{12}\left(\mathcal{A}_{12}, \Gamma_{12}, \epsilon_{12} ; \mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)
$$

- $\bar{\eta}_{3} \cdot \Gamma$ appears only if $\xi_{k}=\frac{1}{2}$, i.e. the exchanged quasi-primary operator is fermionic

Arbitrary 3-point functions simply obtained by enumerating basis $\left\{{ }_{a} F_{i j m}^{12}\right\}$ made from

- \mathcal{A}_{12} 's
- Γ_{12} 's
- ϵ_{12} 's
- $\mathcal{A}_{12} \cdot \bar{\eta}_{3}$'s

Bases of Tensor Structures (cont.)

- Conformal blocks feature simplest form in mixed OPE-three-point basis: $\mathscr{G}_{(a \mid b]}^{i j|m| k \mid}$ (Fortin, VP, Skiba (2019))
- For the conformal bootstrap: most convenient to work in the pure three-point basis
- Pure three-point blocks obtained from mixed ones via

$$
\mathscr{G}_{[a \mid b]}^{i j|m| k l}=\sum_{a^{\prime}=1}^{N_{i j m}}\left(R_{i j m}\right)_{a a^{\prime}} \mathscr{G}_{\left(a^{\prime} \mid b\right]}^{i j|m| k l}
$$

So, strategy is to determine
(1) Mixed basis blocks $\mathscr{G}_{(a \mid b]}^{i j|m| k \mid}$
(2) Rotation matrices $\left(R_{i j m}\right)_{a a^{\prime}}$

Tensor Structures for Towers of Exchanged Operators

- Consider tensor structures for exchanged towers of quasi-primary operators $\boldsymbol{N}_{m}+\ell \boldsymbol{e}_{1}$
- If seed irrep $\boldsymbol{N}_{m}+\ell_{\text {min }} \boldsymbol{e}_{1}$ can be exchanged, so can $\boldsymbol{N}_{m}+\ell \boldsymbol{e}_{1}$ for any $\ell \geq \ell_{\text {min }}$

Idea:
(1) Take ℓ-dependence into account once and for all (fixed)
(2) Just compute seed part $\boldsymbol{N}_{m}+\ell_{\text {min }} \boldsymbol{e}_{1}$ (varies)

- Both \boldsymbol{N}_{m} and $\ell_{\text {min }}$ depend on the irreps of the operators of interest

Tensor Structures for Towers of Exchanged Operators (cont.)

- Therefore, for exchanged quasi-primary operators in $\boldsymbol{N}_{m}+\ell \boldsymbol{e}_{1}$, three-point basis can be separated as

$$
\begin{gathered}
{ }_{b} F_{k l, m+\ell}^{34}={ }_{b} F_{k l, m+i_{b}}^{34}\left(\mathcal{A}_{34} \cdot \overline{\bar{\eta}}_{2}\right)^{\ell-i_{b}} \\
{ }_{a} F_{i j, m+\ell}^{12}={ }_{a} F_{i j, m+i_{a}}^{12}\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)^{\ell-i_{a}} \rightarrow{ }_{a} t_{i j, m+\ell}^{12}={ }_{a} t_{i j, m+i_{a}}^{12}\left(\mathcal{A}_{12}\right)^{\ell-i_{a}}
\end{gathered}
$$

with

- $\left(\mathcal{A}_{34} \cdot \overline{\bar{\eta}}_{2}\right)_{E_{i_{b}+1}^{\prime \prime}} \cdots\left(\mathcal{A}_{34} \cdot \overline{\bar{\eta}}_{2}\right)_{E_{\ell}^{\prime \prime}}$
- $\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{E_{i_{a}+1}} \cdots\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{E_{\ell}}$
the symmetrized ℓ-dependent parts of the respective tensor structures

Tensor Structures for Towers of Exchanged Operators (cont.)

- "Special" parts of tensor structures ${ }_{a} t_{i j, m+i_{a}}^{12}$ and ${ }_{b} F_{k l, m+i_{b}}^{34}$ fixed by knowledge of the specific irreps in question
- OPE basis obtained from three-point basis by replacing $\mathcal{A}_{12} \cdot \bar{\eta}_{3} \rightarrow \mathcal{A}_{12}$
- with the extra F index contracting with the OPE differential operator

For example,

$$
\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{E_{i a+1}} \cdots\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{E_{\ell}} \rightarrow \mathcal{A}_{12 E_{i a+1}^{\prime} F_{i a+1}} \cdots \mathcal{A}_{12 E_{\ell}^{\prime} F_{\ell}}
$$

Tensor Structures: An Example

Case of symmetric traceless $\ell \mathbf{e}_{1}$ exchange in $\langle S V S V\rangle$: Tensor structures are

$$
b=1: \quad\left({ }_{b} F_{k l, m+\ell}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}}=\left(\mathcal{A}_{34} \cdot \overline{\bar{\eta}}_{2}\right)_{D}\left[\left(\mathcal{A}_{34} \cdot \overline{\bar{\eta}}_{2}\right)_{E^{\prime \prime}}\right]^{\ell}
$$

$$
\rightarrow\left({ }_{b} t_{k l, m+\ell}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}\left\{F^{\prime \prime}\right\}}=\mathcal{A}_{34 D F^{\prime \prime}}\left(\mathcal{A}_{34 E^{\prime \prime} F^{\prime \prime}}\right)^{\ell},
$$

$$
b=2: \quad\left({ }_{b} F_{k l, m+\ell}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}}=\mathcal{A}_{34 D E_{1}^{\prime \prime}}\left[\left(\mathcal{A}_{34} \cdot \overline{\bar{\eta}}_{2}\right)_{E^{\prime \prime}}\right]^{\ell-1}
$$

$$
\rightarrow\left({ }_{b} t_{k l, m+\ell}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}\left\{F^{\prime \prime}\right\}}=\mathcal{A}_{34 D E_{1}^{\prime \prime}}\left(\mathcal{A}_{34 E^{\prime \prime} F^{\prime \prime}}\right)^{\ell-1},
$$

$$
a=1: \quad\left({ }_{a} F_{i j, m+\ell}^{12}\right)_{\{a A\}\{b B\}\{e E\}}=\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{B}\left[\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{E}\right]^{\ell}
$$

$$
\rightarrow\left(a t_{i j}^{12, m+\ell}\right)_{\{a A\}\{b B\}}\{E e\}\{F\}=\mathcal{A}_{12 B}^{F}\left(\mathcal{A}_{12}^{E F}\right)^{\ell},
$$

$$
a=2: \quad\left({ }_{a} F_{i j, m+\ell}^{12}\right)_{\{a A\}\{b B\}\{e E\}}=\mathcal{A}_{12 B E_{1}}\left[\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{E}\right]^{\ell-1}
$$

$$
\rightarrow\left({ }_{a} t_{i j}^{12, m+\ell}\right)_{\{a A\}\{b B\}}\{E e\}\{F\}=\mathcal{A}_{12 B}^{E_{1}}\left(\mathcal{A}_{12}^{E F}\right)^{\ell-1}
$$

Tensor Structures: An Example (cont.)

Only interested in information about the special parts

$$
\begin{array}{llll}
b=1: & n_{b}=\ell+1, & i_{b}=0, & \left({ }_{b} t_{k l m}^{34}\right)_{D F^{\prime \prime}}=\mathcal{A}_{34 D F^{\prime \prime}}, \\
b=2: & n_{b}=\ell-1, & i_{b}=1, & \left({ }_{b} t_{k l, m+1}^{33}\right)_{D E_{1}^{\prime \prime}}=\mathcal{A}_{34 D E_{1}^{\prime \prime}}, \\
a=1: & n_{a}=\ell+1, & i_{a}=0, & \left({ }_{a} t_{i j}^{12 m}\right)_{B}{ }^{F}=\mathcal{A}_{12 B}{ }^{F}, \\
a=2: & n_{a}=\ell-1, & i_{a}=1, & \left({ }_{a} t_{i j}^{12, m+1}\right)_{B}{ }^{E_{1}}=\mathcal{A}_{12 B}{ }^{E_{1}} .
\end{array}
$$

Tensor Structures: An Example

Case of $\boldsymbol{e}_{r}+\ell \boldsymbol{e}_{1}$ exchange in $\langle S F S F\rangle$:
$b=1: \quad\left({ }_{b} F_{k l, m+\ell}^{34}\right)_{\{c C\}}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}=\left(C_{\Gamma}^{-1}\right)_{d e^{\prime \prime}}\left[\left(\mathcal{A}_{34} \cdot \overline{\bar{\eta}}_{2}\right)_{E^{\prime \prime}}\right]^{\ell}$

$$
\rightarrow\left({ }_{b} t_{k l, m+\ell}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}\left\{F^{\prime \prime}\right\}}=\left(C_{\Gamma}^{-1}\right)_{d e^{\prime \prime}}\left(\mathcal{A}_{34 E^{\prime \prime} F^{\prime \prime}}\right)^{\ell},
$$

$$
b=2: \quad\left({ }_{b} F_{k l, m+\ell}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}}=\left(\overline{\bar{\eta}}_{2} \cdot \Gamma_{34} C_{\Gamma}^{-1}\right)_{d e^{\prime \prime}}\left[\left(\mathcal{A}_{34} \cdot \overline{\bar{\eta}}_{2}\right)_{E^{\prime \prime}}\right]^{\ell}
$$

$$
\rightarrow\left(b_{k l, m+\ell}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}\left\{F^{\prime \prime}\right\}}=\left(\Gamma_{34 F^{\prime \prime}} C_{\Gamma}^{-1}\right)_{d e^{\prime \prime}}\left(\mathcal{A}_{34 E^{\prime \prime} F^{\prime \prime}}\right)^{\ell}
$$

$$
a=1: \quad\left({ }_{a} F_{i j, m+\ell}^{12}\right)_{\{a A\}\{b B\}\{e E\}}=\left(C_{\Gamma}^{-1}\right)_{b e}\left[\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{E}\right]^{\ell}
$$

$$
\rightarrow\left({ }_{a} t_{i j}^{12, m+\ell}\right)_{\{a A\}\{b B\}}\{E e\}\{F\}=\delta_{b}{ }^{e}\left(\mathcal{A}_{12}^{E F}\right)^{\ell},
$$

$a=2: \quad\left({ }_{a} F_{i j, m+\ell}^{12}\right)_{\{a A\}\{b B\}\{e E\}}=\left(\bar{\eta}_{3} \cdot \Gamma_{12} C_{\Gamma}^{-1}\right)_{b e}\left[\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)_{E}\right]^{\ell}$
$\rightarrow\left({ }_{a} t_{i j}^{12, m+\ell}\right)_{\{a A\}\{b B\}}{ }^{\{E e\}\{F\}}=\left(\Gamma_{12}^{F}\right)_{b}{ }^{e}\left(\mathcal{A}_{12}^{E F}\right)^{\ell}$

Tensor Structures: An Example (cont.)

Only interested in information about the special parts
$b=1: \quad n_{b}=\ell, \quad i_{b}=0, \quad\left({ }_{b} t_{k l m}^{34}\right)_{d e^{\prime \prime}}=\left(C_{\Gamma}^{-1}\right)_{d e^{\prime \prime}}$,
$b=2: \quad n_{b}=\ell+1, \quad i_{b}=0, \quad\left({ }_{b} t_{k l m}^{34}\right)_{d e^{\prime \prime} F^{\prime \prime}}=\left(\Gamma_{34 F^{\prime \prime}} C_{\Gamma}^{-1}\right)_{d e^{\prime \prime}}$,
$a=1: \quad n_{a}=\ell, \quad i_{a}=0, \quad\left({ }_{a} t_{i j}^{12 m}\right)_{b}{ }^{e}=\delta_{b}{ }^{e}$,
$a=2: \quad n_{a}=\ell+1, \quad i_{a}=0$,
$\left({ }_{a} t_{i j}^{12 m}\right)_{b}{ }^{e F}=\left(\Gamma_{12}^{F}\right)_{b}{ }^{e}$.

Projection Operators to Exchanged Representations

- Projection operator to exchanged irreps appears explicitly in conformal block
- Need $\hat{\mathcal{P}}_{13}^{\boldsymbol{N}_{m}+\ell \boldsymbol{e}_{1}}$

Useful to decompose operators as

$$
\hat{\mathcal{P}}_{13}^{N_{m}+\ell \mathbf{e}_{1}}=\sum_{t} \mathscr{A}_{t}(d, \ell) \hat{\mathcal{Q}}_{13 \mid t}^{N_{m}+\ell_{t} \boldsymbol{e}_{1}} \hat{\mathcal{P}}_{13 \mid d+d_{t}}^{\left(\ell-\ell_{t}\right) \boldsymbol{e}_{1}}
$$

- Coefficients $\mathscr{A}_{t}(d, \ell)$ are constants
- Sum is finite and ℓ-independent
- Number of terms depends on irrep \boldsymbol{N}_{m}

Projection Operators to Exchanged Representations (cont.)

- Tensor quantities $\hat{\mathcal{Q}}_{13 \mid t}^{\boldsymbol{N}_{m}+\ell_{t} \boldsymbol{e}_{1}}$ encode information about the special parts of the irrep $\boldsymbol{N}_{m}+\ell_{t} \boldsymbol{e}_{1}$
- $\mathscr{A}_{t}(d, \ell)$ and $\hat{\mathcal{Q}}_{13 \mid t}^{N_{m}+\ell_{t} \boldsymbol{e}_{1}}$ fixed by details of specific exchanged irrep
- Remaining indices carried by shifted projection operators for some d^{\prime} and ℓ^{\prime}

$$
\begin{gathered}
\left(\hat{\mathcal{P}}_{13 \mid d^{\prime}}^{\ell^{\prime} e_{1}}\right)_{E_{\ell}^{\prime} \cdots E_{1}^{\prime}}^{E_{1}^{\prime \prime} \cdots E_{\ell}^{\prime \prime}}=\sum_{i=0}^{\left\lfloor\ell^{\prime} / 2\right\rfloor} \frac{\left(-\ell^{\prime}\right)_{2 i}}{2^{2 i} i!\left(-\ell^{\prime}+2-d^{\prime} / 2\right)_{i}} \\
\times \mathcal{A}_{13\left(E_{1}^{\prime} E_{2}^{\prime}\right.} \mathcal{A}_{13}^{\left(E_{E^{\prime \prime}} E_{2}^{\prime \prime} \cdots \mathcal{A}_{13 E_{2 i-1}^{\prime} E_{2 i}^{\prime}} \mathcal{A}_{13}^{E_{2 i-1}^{\prime \prime} E_{2 i}^{\prime \prime}} \mathcal{A}_{13 E_{2 i+1}^{\prime}}^{\left.E_{2 i+1}^{\prime \prime} \cdots \mathcal{A}_{\left.13 E_{\ell}^{\prime}\right)} E_{\ell^{\prime}}^{\prime \prime}\right)}\right.} .
\end{gathered}
$$

- Shifted projectors not traceless when $d_{t} \neq 0$
- Special indices in special parts need to be extracted
- For this, derived general index separation result for $\hat{\mathcal{P}}_{13 \mid d^{\prime}}^{\ell^{\prime} e_{1}}$

Projection Operators: An Example

The projection operator to $\boldsymbol{e}_{2}+\ell \boldsymbol{e}_{1}$ can be decomposed in terms of shifted projectors as (in position space)

Diagrammatic Notation

Introduce convenient diagrammatic notation for index separation:

- We symbolize shifted projection operator by the vertex

- Solid, dotted, dashed lines represent metrics of the form $\mathcal{A}_{13 E^{\prime} E^{\prime}}, \mathcal{A}_{13}^{E^{\prime \prime} E^{\prime \prime}}$, and $\mathcal{A}_{13 E^{\prime}}{ }^{E^{\prime \prime}}$, respectively
- A line is associated to metrics with one special index, a loop to metrics with two special indices

Diagrammatic Notation for Separation of Special Indices

For example, the index separation identity

$$
\begin{aligned}
& \left(\hat{\mathcal{P}}_{13 \mid d}^{\ell e_{1}}\right)_{\left\{E^{\prime}\right\}}\left\{E^{\prime \prime}\right\}=\mathcal{A}_{13 E_{s}^{\prime}}\left(E^{\prime \prime}\left(\hat{\mathcal{P}}_{13 \mid d+2}^{(\ell-1) e_{1}}\right)_{\left\{E^{\prime}\right\}}\left\{E^{\prime \prime}\right\}\right) \\
& \left.+\frac{\ell-1}{2(-\ell+2-d / 2)} \mathcal{A}_{13 E_{s}^{\prime}\left(E^{\prime}\right.} \mathcal{A}_{13}^{\left(E^{\prime \prime} E^{\prime \prime}\right.}\left(\hat{\mathcal{P}}_{13 \mid d+2}^{(\ell-2) e_{1}}\right)_{\left.\left\{E^{\prime}\right\}\right)}\left\{E^{\prime \prime}\right\}\right)
\end{aligned}
$$

is represented as

Rule for the Rotation Matrix

Can determine the rotation matrix from the relation

$$
\begin{aligned}
& \mathscr{G}_{(a \mid}^{i j \mid m+\ell}=\sum_{a^{\prime}=1}^{N_{i j, m+\ell}}\left(R_{i j, m+\ell}^{-1}\right)_{a a^{\prime}} \bar{\eta}_{3} \cdot \Gamma_{a^{\prime}} F_{i j, m+\ell}^{12}\left(\mathcal{A}_{12}, \Gamma_{12}, \epsilon_{12} ; \mathcal{A}_{12} \cdot \bar{\eta}_{3}\right) \\
= & \sum_{a^{\prime}=1}^{N_{i j, m+\ell}}\left(R_{i j, m+\ell}^{-1}\right)_{a a^{\prime}} \bar{\eta}_{3} \cdot \Gamma_{a^{\prime}} F_{i j, m+i_{a^{\prime}}}^{12}\left(\mathcal{A}_{12}, \Gamma_{12}, \epsilon_{12} ; \mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)^{\ell-i_{a^{\prime}}},
\end{aligned}
$$

using the symmetry properties of the irreps of the three quasi-primary operators in question

Rule for the Rotation Matrix (cont.)

Rotation matrix determined from

$$
\begin{aligned}
& N_{i j, m+\ell} \\
& \sum_{a^{\prime}=1}\left(R_{i j, m+\ell}^{-1}\right)_{a a^{\prime}}\left(a^{\prime} F_{i j, m+i_{a^{\prime}}}^{12}\right)_{\{a A\}\{b B\}\{e E\}\{F\}}\left(\mathcal{A}_{12} \cdot \bar{\eta}_{3}\right)^{\ell-i_{a^{\prime}}} \\
& =(-1)^{2 \xi_{m}(r+1)}\left({ }_{a} t_{i j, m+i_{a}}^{12}\right)_{\{a A\}\{b B\}\left\{e^{\prime} E^{\prime}\right\}\{F\}}\left(C_{\Gamma} \Gamma_{F} C_{\Gamma}^{-1}\right)^{e^{\prime}} e^{\times} \\
& \sum \sum{ }_{a} \kappa_{\left(\boldsymbol{q}, r_{0}, r_{3}, s_{0}, s_{3}, t\right)}^{i j \mid m+{ }_{c}} \\
& r_{0}, r_{3}, 5_{0}, s_{3}, t \geq 0 q_{0}, q_{1}, q_{2}, q_{3} \geq 0 \\
& \times \sum_{\sigma} g_{E_{\sigma(1)}}{ }^{E_{\sigma(1)}^{\prime}} \cdots g_{E_{\sigma\left(r_{0}\right)}}{ }^{E_{\sigma\left(r_{0}\right)}^{\prime}} \bar{\eta}_{3}^{E_{\sigma\left(r_{0}+1\right)}^{\prime}} \cdots \bar{\eta}_{3}^{E_{\sigma\left(r_{0}+r_{3}\right)}^{\prime}}\left(g_{E}^{(Z}\right)^{s_{0}}\left(\bar{\eta}_{3}^{Z}\right)^{s_{3}} \\
& \times S_{\left(q_{0}, q_{1}, q_{2}, q_{3}\right)} E_{E_{v}^{n_{v}^{m+i_{a}}-r_{0}}}^{\left.n_{m}^{m+i_{a}}+2 \xi_{m}+n_{a}-\ell_{a}-r_{0}-r_{3}-s_{0}-s_{3}\right)}\left(-\bar{\eta}_{2 E}\right)^{\ell_{a}-s_{0}}
\end{aligned}
$$

Main Elements

- Totally symmetric S-tensor: structure built from g 's, $\bar{\eta}_{1} \mathrm{~s}, \bar{\eta}_{2} \mathrm{~s}$, $\bar{\eta}_{3} \mathrm{~S}$

$$
\begin{gathered}
S_{\left(q_{0}, q_{1}, q_{2}, q_{3}\right)}^{A_{1} \cdot A_{\bar{q}}}=g^{\left(A_{1} A_{2}\right.} \cdots g^{A_{2 q_{0}-1} A_{2 q_{0}}} \bar{\eta}_{1}^{A_{2 q_{0}+1}} \cdots \bar{\eta}_{1}^{A_{2 q_{0}+q_{1}}} \\
\times \bar{\eta}_{2}^{A_{2 q_{0}+q_{1}+1}} \cdots \bar{\eta}_{2}^{A_{2 q_{0}+q_{1}+q_{2}}} \bar{\eta}_{3}^{A_{2 q_{0}+q_{1}+q_{2}+1}} \cdots \bar{\eta}_{3}^{\left.A_{\bar{q}}\right)} \\
\bar{q}=2 q_{0}+q_{1}+q_{2}+q_{3}
\end{gathered}
$$

- Z indices $Z \in\left\{E_{\sigma\left(r_{0}+r_{3}+1\right)}^{\prime}, \ldots, E_{\sigma\left(n_{v}^{m+i_{a}}\right)}^{\prime}, F^{\left.n_{a}-\ell_{a}+2 \xi_{m}\right\}}\right.$
- ${ }_{a} \kappa_{\left(\boldsymbol{q}, r_{0}, r_{3}, s_{0}, s_{3}, t\right)}^{i j \mid m+{ }_{c}}$ coefficients comprised from various Pochhammer symbols, e.g.

$$
\left(\Delta_{m+\ell}+n_{v}^{m}+\xi_{m}+\ell-r_{0}\right)_{h_{i j, m+\ell}+n_{\mathrm{a}} / 2-\ell+i_{a}-s_{0}+t-q_{0}-q_{1}}
$$

Rule for Conformal Blocks in the Mixed Basis

Conformal blocks in the mixed basis $(a \mid b]$ given by

$$
\begin{aligned}
& \frac{\left(-\ell_{t}\right)_{i_{a}-j_{a}}\left(-\ell_{t}\right)_{i_{b}-j_{b}}\left(-\ell+\ell_{t}\right)_{j_{a}}\left(-\ell+\ell_{t}\right)_{j_{b}}}{(-\ell)_{i_{a}}(-\ell)_{i_{b}}} \\
& \times \sum_{r, r^{\prime}, r^{\prime \prime} \geq 0}(-1)^{\ell-\ell^{\prime}-i_{a}+r_{1}^{\prime}+r_{2}^{\prime}} \frac{(-2)^{r_{3}^{\prime}+r_{3}^{\prime \prime} \ell^{\prime}!}}{\left(d^{\prime} / 2-1\right)_{\ell^{\prime}}} \\
& r+2 r_{0}^{\prime}+r_{1}^{\prime}+r_{2}^{\prime}=j_{a} \\
& r+2 r_{0}^{\prime \prime}+r_{1}^{\prime \prime}+r_{2}^{\prime \prime}=j_{b} \\
& r_{0}^{\prime}+r_{1}^{\prime}+r_{3}^{\prime}=r_{0}^{\prime \prime}+r_{1}^{\prime \prime}+r_{3}^{\prime \prime} \\
& \times \mathscr{C}_{j_{a}, j_{b}}^{\left(d+d_{t}, \ell-\ell_{t}\right)}\left(r, \boldsymbol{r}^{\prime}, r^{\prime \prime}\right)\left(C_{\ell^{\prime}}^{\left(d^{\prime} / 2-1\right)}(X)\right)_{s_{(a \mid b)}^{i j|m+\ell| k \mid}\left(t, j_{a}, j_{b}, r, \boldsymbol{r}^{\prime}, \boldsymbol{r}^{\prime \prime}\right)}
\end{aligned}
$$

Rule for Conformal Blocks in the Mixed Basis (cont.)

With the associated substitution rule

$$
\begin{aligned}
& s_{(a \mid b)}^{i j|m+\ell| k l}\left(t, j_{a}, j_{b}, r, \boldsymbol{r}^{\prime}, \boldsymbol{r}^{\prime \prime}\right): \alpha_{2}^{s_{2}} \alpha_{3}^{s_{3}} \alpha_{4}^{s_{4}} x_{3}^{r_{3}} x_{4}^{r_{4}} \rightarrow \operatorname{Sym}_{\left\{E_{s}^{\prime}\right\},\left\{E_{s}^{\prime \prime}\right\}} \\
& (-1)^{2 \xi_{m}}\left(a_{i j} t_{i j}^{12, m+i_{a}}\right)_{\{a A\}\{b B\}}\{E e\}\{F\}\left(g_{E_{s} E_{s}}\right)^{r_{0}^{\prime}}\left(\mathcal{S}_{E_{s}} E_{s}^{\prime \prime \prime}\right)^{r}\left[\left(\mathcal{S} \cdot \bar{\eta}_{4}\right)_{E_{s}}\right]^{r_{2}^{\prime}} \\
& \left(G_{\left(\ell^{\prime}-\ell+2 r_{3}^{\prime}, n_{a}-\ell, n_{3}^{\prime}, n_{4}^{\prime}, n_{5}^{\prime}\right)}^{i j|m+\ell|}\right)_{F_{s}^{n_{a}-\ell+i_{a}} E_{s}^{r_{1}^{\prime}}}^{E_{s}^{\prime \prime r_{1}^{\prime \prime}} F^{\prime \prime 4 \xi_{m}} F^{\prime \prime n_{b}-\ell+i_{b}} F^{\prime \prime \ell_{t}-i_{b}+j_{b}}}\left(\bar{\eta}_{2}^{E}\right)^{\ell_{t}-i_{a}+j_{a}} \\
& \left(\Gamma_{F^{\prime \prime}} \bar{\eta}_{3} \cdot \Gamma \mathcal{S}^{n_{v}^{m}+\ell_{t}} \hat{\mathcal{Q}}_{13 \mid t}^{N_{m}+\ell_{t} \boldsymbol{e}_{1}} \Gamma_{F^{\prime \prime}}\right)_{e E_{v}^{n_{v}^{m}}\left(E^{\ell_{t}-i_{a}+j_{a}} E_{s}^{i_{a}-j_{a}}\right)}^{\left(E_{s}^{\prime \prime i_{b}-j_{b}} E^{\prime \prime \ell_{t}-i_{b}+j_{b}}\right) E^{\prime \prime n_{v}^{m}} e^{\prime \prime}} \\
& {\left[\left(\bar{\eta}_{2} \cdot \mathcal{S}\right)^{E_{s}^{\prime \prime}}\right]^{r_{2}^{\prime \prime}}\left(g^{E_{s}^{\prime \prime} E_{s}^{\prime \prime}}\right)^{r_{0}^{\prime \prime}}\left({ }_{b} t_{k l, m+i_{b}}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}\left\{F^{\prime \prime}\right\}}\left(\mathcal{A}_{34 E^{\prime \prime} F^{\prime \prime}}\right)^{\ell_{t}-i_{b}+j_{b}}}
\end{aligned}
$$

Main Elements

- Gegenbauer polynomials $C_{n}^{(\lambda)}(X)$ in the special variable

$$
X=\frac{\left(\alpha_{4}-\alpha_{2}\right) x_{4}-\left(\alpha_{3}-\alpha_{2}\right) x_{3}}{2}, \quad x_{3}=\frac{u}{v}, \quad x_{4}=u
$$

- $G_{\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) A_{1} \cdots A_{n}}^{i j|m| k}$ related to tensorial generalization of Exton G function that appears in $\langle S S S S\rangle$ scalar exchange blocks
- $G_{\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) A_{1} \cdots A_{n}}^{i j|m| k t a l l y}$ symmetric in all of its indices

Main Elements (cont.)

- Special combination of Gs is ubiquitous:

$$
\begin{gathered}
\mathcal{S}_{A}^{B}=g_{A}^{B} G_{(0,0,0,0,0)}^{i j|m+\ell| k l}-G_{(0,0,2,0,0) A}^{i j|m+\ell| k l} \bar{\eta}_{1}^{B} \\
-\bar{\eta}_{3 A}\left(G_{(0,0,2,2,0)}^{i j|m+\ell| k l}\right)^{B}+\left(G_{(0,0,4,2,0)}^{i j|m+\ell| k l}\right)_{A}^{B}
\end{gathered}
$$

- Appears either by itself or via contractions with embedding space coordinates $\bar{\eta}_{2}, \bar{\eta}_{4}$, e.g. as in $\left(\bar{\eta}_{2} \cdot \mathcal{S}\right)^{E_{s}^{\prime \prime}},\left(\mathcal{S} \cdot \bar{\eta}_{4}\right)_{E_{s}}$
- $\Gamma_{F^{\prime \prime}} \mathrm{s}, \bar{\eta}_{3} \cdot \Gamma$ present only if exchanged operator is fermionic, $\xi_{m}=\frac{1}{2}$
- Special part $\hat{\mathcal{Q}}_{13 \mid t}^{N_{m}+\ell_{t} \boldsymbol{e}_{1}}$ of projector $\hat{\mathcal{P}}_{13}^{\boldsymbol{N}_{m}+\ell \boldsymbol{e}_{1}}$ contracts with $G s, \mathcal{S}$, and tensor structures

Properties of G

Substitution rules necessitate the multiplication of several G 's according to

$$
\begin{aligned}
& G_{\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) A^{n}}^{\left.i j|m+\ell| G_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right) B^{m}} \\
= & G_{\left(n_{1}+m_{1}, n_{2}+m_{2}, n_{3}+m_{3}, n_{4}+m_{4}, n_{5}+m_{5}\right) A^{n} B^{m}}^{i j|m+\ell| m+\ell}
\end{aligned}
$$

Moreover, G satisfies the contiguous relations

$$
\begin{gathered}
g \cdot G_{\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)}^{i j,}=0, \\
\bar{\eta}_{1} \cdot G_{\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)}^{i j| |}=G_{\left(n_{1}, n_{2}, n_{3}-2, n_{4}, n_{5}\right)}^{i j|m+\ell|}, \\
\bar{\eta}_{2} \cdot G_{\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)}^{i j \mid m+}=G_{\left(n_{1}+2|k|, n_{2}, n_{3}, n_{4}, n_{5}\right)}^{i j \mid m+}, \\
\bar{\eta}_{3} \cdot G_{\left(n_{1}, n_{2}, k n_{3}, n_{4}, n_{5}\right)}^{i j \mid m+}=G_{\left(n_{1}, \ell \mid n_{2}, n_{3}-2, n_{4}-2, n_{5}\right)}^{i j}, \\
\bar{\eta} 4^{i j} \cdot G_{\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right)}^{i j}=G_{\left(n_{1}, n_{2}, n_{3}-2, n_{4}, n_{5}+2\right)}^{i j)}
\end{gathered}
$$

- Useful for facilitating contractions

Example: \boldsymbol{e}_{1} Exchange in $\langle S V S V\rangle$

With the aid of diagrams, it is easy to extract indices as needed

$$
\begin{aligned}
& a=1, b=1: \quad \hat{\mathcal{P}}_{131 d}^{\ell e_{1}}=\quad \text {. } \ldots, \\
& a=1, b=2 \text { : } \\
& \hat{\mathcal{P}}_{13 \mid d}^{\ell e_{1}}=\varliminf_{\vdots}^{\vdots}-\cdots+\varliminf_{\ddots}, \ldots, \\
& a=2, b=1: \\
& \hat{\mathcal{P}}_{13 \mid d}^{\ell e_{1}}=\varliminf_{\vdots}-1 . \\
& a=2, b=2 .
\end{aligned}
$$

Example: $\ell \boldsymbol{e}_{1}$ Exchange in $\langle S V S V\rangle$ (cont.)

These directly lead to four conformal blocks expressed in terms of Gegenbauer polynomials

$$
\begin{aligned}
& \mathscr{G}_{(1 \mid 1]}^{i i|m+\ell| k \mid}=\frac{\ell!}{(d / 2-1)_{\ell}}\left(C_{\ell}^{(d / 2-1)}(X)\right)_{s_{(1 \mid 1)}^{1}}, \\
& \mathscr{G}_{(1 \mid 2]}^{i j|m+\ell| k \mid}=-\frac{(\ell-1)!}{(d / 2)_{\ell-1}}\left(C_{\ell-1}^{(d / 2)}(X)\right)_{s_{(1 / 2)}^{1}}+\frac{(\ell-1)!}{(d / 2)_{\ell-1}}\left(C_{\ell-2}^{(d / 2)}(X)\right)_{s_{(1 / 2)}^{2}}, \\
& \mathscr{G}_{(2 \mid 1]}^{i j|m+\ell| k \mid}=-\frac{(\ell-1)!}{(d / 2)_{\ell-1}}\left(C_{\ell-1}^{(d / 2)}(X)\right)_{s_{(2 \mid 1)}^{1}}+\frac{(\ell-1)!}{(d / 2)_{\ell-1}}\left(C_{\ell-2}^{(d / 2)}(X)\right)_{s_{(2 \mid 1)}^{2}}, \\
& \mathscr{G}_{(2 \mid 2]}^{i j|m+\ell| k \mid}=\frac{(\ell-1)!}{\ell(d / 2+1)_{\ell-2}}\left(C_{\ell-2}^{(d / 2+1)}(X)\right)_{s_{(2 \mid 2)}^{1}}-\frac{(\ell-1)!}{\ell(d / 2+1)_{\ell-2}}\left(C_{\ell-3}^{(d / 2+1)}(X)\right)_{s_{(2 \mid 2)}^{2}} \\
& -\frac{(\ell-1)!}{\ell(d / 2+1)_{\ell-2}}\left(C_{\ell-3}^{(d / 2+1)}(X)\right)_{s_{(2 \mid 2)}^{3}}-\frac{(\ell-1)!}{\ell(d / 2)_{\ell-1}}\left(C_{\ell-2}^{(d / 2)}(X)\right)_{s_{(2 \mid 2)}^{4}} \\
& +\frac{(\ell-1)!}{\ell(d / 2+1)_{\ell-2}}\left(C_{\ell-4}^{(d / 2+1)}(X)\right)_{s_{(2 / 2)}^{5}}+\frac{(\ell-1)!}{\ell(d / 2)_{\ell-1}}\left(C_{\ell-1}^{(d / 2)}(X)\right)_{s_{(212)}^{6}} .
\end{aligned}
$$

Example: $\ell \boldsymbol{e}_{1}$ Exchange in $\langle S V S V\rangle$ (cont.)

A specific substitution rule is ascribed to each Gegenbauer term. For example,

$$
\begin{aligned}
& s_{(1 \mid 1)}^{1}: \alpha_{2}^{s_{2}} \alpha_{3}^{s_{3}} \alpha_{4}^{s_{4}} x_{3}^{r_{3}} x_{4}^{r_{4}} \rightarrow G_{(0,1,3,1,-1) B D}^{i j|m+\ell| k l} \\
& s_{(1 \mid 2)}^{1}: \alpha_{2}^{s_{2}} \alpha_{3}^{s_{3}} \alpha_{4}^{s_{4}} x_{3}^{r_{3}} x_{4}^{r_{4}} \rightarrow\left(\bar{\eta}_{2} \cdot \mathcal{S}\right)_{D} G_{(-1,1,0,0,0) B}^{i j|m+\ell| k \mid} \\
& s_{(2 \mid 1)}^{1}: \alpha_{2}^{s_{2}} \alpha_{3}^{s_{3}} \alpha_{4}^{s_{4}} x_{3}^{r_{3}} x_{4}^{r_{4}} \rightarrow\left(\mathcal{S} \cdot \bar{\eta}_{4}\right)_{B} G_{(-1,-1,2,0,-2) D}^{i j|m+\ell| k \mid} \\
& s_{(2 \mid 1)}^{2}: \alpha_{2}^{s_{2}} \alpha_{3}^{s_{3}} \alpha_{4}^{s_{4}} x_{3}^{r_{3}} x_{4}^{r_{4}} \rightarrow G_{(-2,-1,3,1,-1) B D}^{i j|m+\ell| k \mid}
\end{aligned}
$$

Example: $\ell \boldsymbol{e}_{1}$ Exchange in \langle SVSV \rangle (cont.)

Rotation matrix for this case:

$$
\begin{aligned}
&\left(R_{i j, m+\ell}^{-1}\right)_{1,1}={ }_{1} \kappa_{(0,0,0,0,0,0,0,1,0)}^{i j \mid m+\ell}+{ }_{1} \kappa_{(0,0,0,1,0,0,0,0,0)}^{i j \mid m+\ell}, \\
&\left(R_{i j, m+\ell}^{-1}\right)_{1,2}={ }_{1} \kappa_{(0,0,0,0,0,0,1,0,0)}^{i j \mid m+\ell}+{ }_{1} \kappa_{(0,0,0,0,0,0,1,0,1)}^{i j \mid m+\ell}, \\
&\left(R_{i j, m+\ell}^{-1}\right)_{2,1}=-{ }_{2} \kappa_{(0,0,1,0,0,0,0,1,0)}^{i j \mid m+\ell}-{ }_{2} \kappa_{(0,0,1,0,0,1,0,0,0)}^{i j \mid m+\ell} \\
&-\frac{1}{2}{ }_{2} \kappa_{(0,0,1,1,0,0,0,0,0)}^{i j \mid m+\ell} \\
&\left(R_{i j, m+\ell}^{-1}\right) \\
& \quad-{ }_{2,2}= \kappa_{(0,0,1,0,0,0,1,0,1)}^{i j} \kappa_{(0,0,0,0,1,0,0,0,0)}^{i j \mid m+\ell}+{ }_{2} \kappa_{(1,0,0,0,0,0,0,0,0)}^{i j \mid m+\ell} \kappa_{(0,0,1,0,0,0,1,0,0)}^{i j \mid m+\ell}
\end{aligned}
$$

Example: $\boldsymbol{e}_{r}+\ell \boldsymbol{e}_{1}$ Exchange in $\langle S F S F\rangle$

Projection operator to $\boldsymbol{e}_{r}+\ell \boldsymbol{e}_{1}$:

t	$\left(d_{t}, \ell_{t}\right)$	$\mathscr{A}_{t}(d, \ell)$	$\hat{\mathcal{Q}}_{t}$
1	$(2,0)$	1	$\delta_{\alpha}{ }^{\alpha^{\prime}}$
2	$(2,1)$	$\frac{\ell}{2(-\ell+1-d / 2)}$	$\left(\gamma_{\mu} \gamma^{\mu^{\prime}}\right)_{\alpha}{ }^{\alpha^{\prime}}$

Since $i_{a}=i_{b}=0$ for all tensor structures, no need to extract any indices

$$
\begin{aligned}
& \forall a, b: \quad \mathscr{A}_{1} \hat{\mathcal{Q}}_{13 \mid 1}^{e_{r}} \hat{\mathcal{P}}_{13 \mid d+2}^{\ell \boldsymbol{e}_{1}}+\mathscr{A}_{2} \hat{\mathcal{Q}}_{13 \mid 2}^{\boldsymbol{e}_{r}+\boldsymbol{e}_{1}} \hat{\mathcal{P}}_{13 \mid d+2}^{(\ell-1) \boldsymbol{e}_{1}} \\
& =\mathscr{A}_{1} \hat{\mathcal{Q}}_{13 \mid 1}^{e_{r}} \times \varliminf_{\vdots}+\cdots+\mathscr{A}_{2} \hat{\mathcal{Q}}_{13 \mid 2}^{\boldsymbol{e}_{r}+\boldsymbol{e}_{1}} \times \varliminf_{\vdots}
\end{aligned}
$$

Example: $\boldsymbol{e}_{r}+\ell \boldsymbol{e}_{1}$ Exchange in $\langle S F S F\rangle$ (cont.)

All four different blocks have the same form:

$$
\begin{aligned}
\forall a, b: & \mathscr{G}_{(a \mid b]}^{i j|m+\ell| k \mid}=\frac{\ell!}{(d / 2)_{\ell}}\left(C_{\ell}^{(d / 2)}(X)\right)_{s_{(a \mid b)}^{1}} \\
& +\frac{\ell!}{2(d / 2)_{\ell}}\left(C_{\ell-1}^{(d / 2)}(X)\right)_{s_{(a \mid b)}^{2}}
\end{aligned}
$$

But different substitution rules due to the tensor structures and the different values of n_{a} and n_{b}, e.g.

$$
\begin{aligned}
s_{(1 \mid 1)}^{1}: \alpha_{2}^{s_{2}} \alpha_{3}^{s_{3}} \alpha_{4}^{s_{4}} x_{3}^{r_{3}} x_{4}^{r_{4}} & \rightarrow-\left(\Gamma_{F^{\prime \prime}} \bar{\eta}_{3} \cdot \Gamma \Gamma_{F^{\prime \prime}} C_{\Gamma}^{-T}\right)_{b d}\left(G_{(0,0,4,3,-1)}^{i j| |+\ell \mid k l}\right)^{F^{\prime \prime 2}} \\
& =-2\left(\Gamma_{F^{\prime \prime}} C_{\Gamma}^{-T}\right)_{b d}\left(G_{(0,0,2,1,-1)}^{i j|m+\ell| \mid k l}\right)^{F^{\prime \prime}}
\end{aligned}
$$

Example: $\boldsymbol{e}_{r}+\ell \boldsymbol{e}_{1}$ Exchange in $\langle S F S F\rangle$ (cont.)

Rotation matrix for this case:

$$
\begin{aligned}
\left(R_{i j, m+\ell}^{-1}\right)_{1,1} & =0 \\
\left(R_{i j, m+\ell}^{-1}\right)_{1,2} & =(-1)^{r}{ }_{1} \kappa_{(0,0,1,0,0,0,0,0,0)}^{i j \mid m+\ell}, \\
\left(R_{i j, m+\ell}^{-1}\right)_{2,1} & =(-1)^{r+1}\left[2 \kappa_{(0,0,1,0,0,0,0,1,0)}^{i j \mid m+\ell}-\frac{1}{2}{ }_{2} \kappa_{(0,0,1,0,0,0,1,0,0)}^{i j \mid m+\ell}\right. \\
& -\frac{1}{2} 2 \kappa_{(0,0,1,0,0,0,1,0,1)}^{i j \mid m+\ell}+{ }_{2} \kappa_{(0,0,1,1,0,0,0,0,0)}^{i j \mid m+\ell} \\
& \left.+d_{2} \kappa_{(1,0,0,0,0,0,0,0,0)}^{i j \mid m+\ell}\right] \\
\left(R_{i j, m+\ell}^{-1}\right)_{2,2} & =0 .
\end{aligned}
$$

where r is the rank of the Lorentz group

Conclusions and Outlook

- Established a set of efficient rules for determining all possible four-point conformal blocks in the context of embedding space OPE formalism
- Require knowledge of fundamental group theoretic quantities: projection operators of external and exchanged quasi-primary operators
- Projectors imply two tensor structures for left $\left({ }_{a} t_{i j}^{12, m+\ell}\right)_{\{a A\}\{b B\}}\{E e\}\{F\}$ and right $\left({ }_{b} t_{k l, m+\ell}^{34}\right)_{\{c C\}\{d D\}\left\{e^{\prime \prime} E^{\prime \prime}\right\}\left\{F^{\prime \prime}\right\}}$ OPE
- Input data: Projection operators and tensor structures
- Rules allow us to generate global conformal blocks for any exchanged Lorentz representation

Conclusions and Outlook (cont.)

- Conformal blocks given in terms of linear combinations of Gegenbauer polynomials in a specific variable X, coupled with associated substitution rules
- Introduced diagrammatic notation to easily determine appropriate linear combinations of Gegenbauer polynomials
- Blocks have simplest form in the mixed OPE-three-point basis
- For bootstrap, need to change to pure three-point basis \Rightarrow rotation matrices
- In future: Use these rules to derive blocks for 4-point functions of conserved currents and energy-momentum tensors and other operators of theoretical interest

THANK YOU!

Backup Slides

What is a CFT?

A CFT is invariant under the conformal group $S O(1, d-1)$:

- Poincaré algebra
- dilatations
- special conformal transformations

Conformal algebra:

$$
\begin{gathered}
{\left[M_{\mu \nu}, M_{\lambda \rho}\right]=-\left(s_{\mu \nu}\right)_{\lambda}^{\delta} M_{\delta \rho}-\left(s_{\mu \nu}\right)_{\rho}^{\delta} M_{\lambda \delta},} \\
{\left[M_{\mu \nu}, P_{\lambda}\right]=-\left(s_{\mu \nu}\right)_{\lambda}^{\rho} P_{\rho}, \quad\left[M_{\mu \nu}, K_{\lambda}\right]=-\left(s_{\mu \nu}\right)_{\lambda}^{\rho} K_{\rho},} \\
{\left[P_{\mu}, D\right]=i P_{\mu}, \quad\left[K_{\mu}, D\right]=-i K_{\mu}, \quad\left[P_{\mu}, K_{\nu}\right]=2 i\left(g_{\mu \nu} D-M_{\mu \nu}\right)}
\end{gathered}
$$

where

$$
\left(s_{\mu \nu}\right)^{\lambda \rho}=i\left(\delta_{\mu}{ }^{\lambda} \delta_{\nu}^{\rho}-\delta_{\mu}{ }^{\rho} \delta_{\nu}{ }^{\lambda}\right), \quad\left[s_{\mu \nu}, s_{\lambda \rho}\right]=-\left(s_{\mu \nu}\right)_{\lambda}^{\lambda^{\prime}} s_{\lambda^{\prime} \rho}-\left(s_{\mu \nu}\right)_{\rho}^{\rho^{\prime}} s_{\lambda \rho^{\prime}}
$$

The Spectrum of Operators

Two kinds of operators in CFTs:

- quasi-primaries $\left[K_{\mu}, \mathcal{O}^{(x)}(0)\right]=0$: transform simply under conformal transformations, e.g.

$$
x \rightarrow x^{\prime}, \quad \mathcal{O}^{(x)}(x) \rightarrow \tilde{\mathcal{O}}^{(x)}\left(x^{\prime}\right)=b(x)^{-\Delta} \mathcal{O}^{(x)}(x)
$$

- descendants: don't!
- Complete spectrum of operators: primaries+infinite towers of descendants
- Organic observables in CFTs: M-point correlation functions of operators, $\left\langle\mathcal{O}^{(x)}\left(x_{1}\right) \ldots \mathcal{O}^{(x)}\left(x_{M}\right)\right\rangle$

The Embedding Space

Embedding space \mathcal{M}^{d+2} :

- A natural habitat for the conformal group: $(d+2)$-dimensional hypercone where operators live

$$
\eta^{2} \equiv g_{A B} \eta^{A} \eta^{B}=0
$$

- Light rays in one-to-one correspondence with position space points

The Embedding Space (cont.)

Coordinates on the hypercone:

$$
\eta^{A}=\left(\eta^{\mu}, \eta^{d+1}, \eta^{d+2}\right)
$$

- $\lambda \eta^{A}$ identified with η^{A} for $\lambda>0$

Connection to position space:

$$
x^{\mu}=\frac{\eta^{\mu}}{-\eta^{d+1}+\eta^{d+2}}
$$

In the embedding space,

- Conformal transformations act linearly: Conformal group becomes like Lorentz group!
- All operators in d-dimensional CFT need to somehow be lifted to \mathcal{M}^{d+2}.

A New Uplift

Uplift based on quasi-primary operators with spinor indices only and standard projection operators (Fortin \& Skiba (2019))
Idea:

- Start with a quasi-primary operator in position space $\mathcal{O}^{(x)}$ in a general irrep of $S O(1, d-1): \mathbf{N}^{\mathcal{O}}=\left\{N_{1}^{\mathcal{O}}, \ldots, N_{r}^{\mathcal{O}}\right\}$
- Lift it to a quasi-primary \mathcal{O} in the embedding space in an irrep of $S O(2, d): \mathbf{N}_{E}^{\mathcal{O}}=\left\{0, N_{1}^{\mathcal{O}}, \ldots, N_{r}^{\mathcal{O}}\right\}$
- exact for the defining representations,
- true in general up to the removal of traces

A New Uplift (cont.)

With this,

- Scalars uplift to scalars, spinors to spinors, i-index antisymmetric tensors to ($\mathrm{i}+1$)-index antisymmetric tensors
- Advantage: Approach treats fermions and bosons on an equal footing

From the perspective of the Dynkin indices, everything looks the same!

- Uplift makes universal treatment of all quasi-primary operators in arbitrary irreps of the Lorentz group possible.

The OPE Differential Operator: A Bit of Background

Seek most useful differential operator ${ }_{a} \mathcal{D}_{i j}^{k}\left(\eta_{1}, \eta_{2}\right)$ for quasi-primary operators in general irreducible representations of the Lorentz group.

- What are our options?
- Only consistent first order operators:

$$
\Theta=\eta^{A} \frac{\partial}{\partial \eta^{A}}, \quad \mathcal{L}_{A B}=i\left(\eta_{A} \frac{\partial}{\partial \eta^{B}}-\eta_{B} \frac{\partial}{\partial \eta^{A}}\right)
$$

- Unique consistent second order operator: Thomas-Todorov

$$
\mathcal{K}_{A}=\left(\eta^{B} \frac{\partial}{\partial \eta^{B}}+\frac{d}{2}\right) \frac{\partial}{\partial \eta^{A}}-\frac{1}{2} \eta_{A} \frac{\partial}{\partial \eta_{B}} \frac{\partial}{\partial \eta^{B}}
$$

A Brief History of the OPE Differential Operator

Θ doesn't work: Cannot generate descendants!

Left with:

- $\mathcal{L}_{A B}$
- \mathcal{K}_{A}
- $\left(\mathcal{L}^{2}\right)_{A B}$
- With two embedding space coordinates η_{i} and η_{j}, only one independent operator well-defined on the lightcone!

A Brief History of the OPE Differential Operator

Inspired by Ferrara et al. (1971, 1972, 1973),
Candidate OPE differential operator:

$$
\begin{gathered}
\mathcal{D}_{i j}^{A} \equiv \frac{1}{\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{1}{2}}}\left[-i\left(\eta_{i} \cdot \mathcal{L}_{j}\right)^{A}-\eta_{i}^{A} \Theta_{j}\right]=\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{1}{2}} \mathcal{A}_{i j}^{A B} \partial_{j B} \\
\mathcal{D}_{i j}^{2} \equiv \mathcal{D}_{i j}^{A} \mathcal{D}_{i j A}=\left(\eta_{i} \cdot \eta_{j}\right) \partial_{j}^{2}-\eta_{i} \cdot \partial_{j}\left(d_{E}-4+2 \Theta_{j}\right) \\
=\left(\eta_{i} \cdot \eta_{j}\right) \partial_{j}^{2}-\left(d_{E}-2+2 \Theta_{j}\right) \eta_{i} \cdot \partial_{j}
\end{gathered}
$$

A Brief History of the OPE Differential Operator

- Candidate has many nice properties!

Notably,

$$
\begin{gathered}
{\left[\mathcal{D}_{i j}^{A}, \mathcal{D}_{i j}^{2 h}\right]=\frac{2 h}{\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{1}{2}}} \eta_{i}^{A} \mathcal{D}_{i j}^{2 h},} \\
{\left[\Theta_{i}, \mathcal{D}_{i j}^{2 h}\right]=h \mathcal{D}_{i j}^{2 h}, \quad\left[\Theta_{j}, \mathcal{D}_{i j}^{2 h}\right]=-h \mathcal{D}_{i j}^{2 h},} \\
\mathcal{D}_{i j}^{2 h} \eta_{j}^{A}-\eta_{j}^{A} \mathcal{D}_{i j}^{2 h}=2 h\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{1}{2}} \mathcal{D}_{i j}^{A} \mathcal{D}_{i j}^{2(h-1)}-h(d+2 h-2) \eta_{i}^{A} \mathcal{D}_{i j}^{2(h-1)}
\end{gathered}
$$

- But difficult to work with!

An OPE Differential Operator

Motivated by last commutation relation, instead find

- Winning candidate

$$
\mathcal{D}_{i j \mid h}^{A}=\frac{\eta_{j}^{A}}{\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{1}{2}}} \mathcal{D}_{i j}^{2}+2 h \mathcal{D}_{i j}^{A}-h(d+2 h-2) \frac{\eta_{i}^{A}}{\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{1}{2}}}
$$

- Embedding space OPE differential operator

$$
\mathcal{D}_{i j}^{(d, h, n) A_{1} \cdots A_{n}} \equiv \mathcal{D}_{i j \mid h+n}^{A_{n}} \cdots \mathcal{D}_{i j \mid h+1}^{A_{1}} \mathcal{D}_{i j}^{2 h}=\frac{1}{\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{n}{2}}} \mathcal{D}_{i j}^{2(h+n)} \eta_{j}^{A_{1}} \cdots \eta_{j}^{A_{n}}
$$

Fortin, Skiba (2019)

An OPE Differential Operator

Properties:

- well-defined on the lightcone
- fully symmetric and traceless with respect to embedding space metric $g_{A B}$
- satisfies simple contiguous relations
- very convenient, as evident from

$$
\begin{gathered}
\mathcal{D}_{i j}^{(d, h, n) A_{1} \cdots A_{n}} \eta_{j}^{A_{n+1} \cdots \eta_{j}^{A_{n+k}}=\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{k}{2}} \mathcal{D}_{i j}^{(d, h-k, n+k) A_{1} \cdots A_{n+k}}} \begin{array}{c}
=\frac{1}{\left(\eta_{i} \cdot \eta_{j}\right)^{\frac{n}{2}}} \mathcal{D}_{i j}^{(d, h+n, 0)} \eta_{j}^{A_{1}} \cdots \eta_{j}^{A_{n+k}}
\end{array} .
\end{gathered}
$$

Fractional derivative \Rightarrow a sort of analytic continuation

A Special Tensorial Function

Enter a special tensorial object:

$$
l_{i j}^{(d, h, n ; \boldsymbol{p}) A_{1} \cdots A_{n}}=\mathcal{D}_{i j}^{(d, h, n) A_{1} \cdots A_{n}} \prod_{a \neq i, j} \frac{1}{\left(\eta_{j} \cdot \eta_{a}\right)^{p_{a}}}
$$

Naturally arises in computation of M-point correlation functions!

Fortin, Skiba (2019)

A Special Tensorial Function (cont.)

In terms of homogeneized coordinates $\bar{\eta}_{i}$:

$$
\begin{aligned}
& \bar{I}_{i j ; k \ell}^{(d, h, n ; \boldsymbol{p})}=(-2)^{h}(\bar{p})_{h}(\bar{p}+1-d / 2)_{h} x_{m}^{\bar{p}+h} \\
& \sum_{\substack{\left\{q_{r}\right\} \geq 0 \\
\bar{q}=n}} S_{(\boldsymbol{q})} x_{m}^{\bar{q}-q_{0}-q_{i}} K_{i j ; k \ell ; \boldsymbol{m}}^{(d, h ; \boldsymbol{q})}\left(x_{m} ; \boldsymbol{y} ; \mathbf{z}\right),
\end{aligned}
$$

where
$S_{(\boldsymbol{q})}^{A_{1} \cdots A_{\bar{q}}}=g^{\left(A_{1} A_{2}\right.} \cdots g^{A_{2 q_{0}-1} A_{2 q_{0}}} \bar{\eta}_{1}^{A_{2 q_{0}+1}} \cdots \bar{\eta}_{1}^{A_{2 q_{0}+q_{1}}} \cdots \bar{\eta}_{M}^{A_{\bar{q}-q_{M}+1}} \cdots \bar{\eta}_{M}^{\left.A_{\bar{q}}\right)}$
with $\bar{q}=2 q_{0}+\sum_{r \geq 1} q_{r}$
It's totally symmetric in all of its indices!

It's all in T!

$\bar{l}_{i j ; k \ell}^{(d, h, n ; \mathbf{p})}$ satisfies some convenient contiguous relations:

$$
\begin{gathered}
g \cdot \bar{l}_{i j ; k \ell}^{(d, h, n ; \boldsymbol{p})}=0 \\
\bar{\eta}_{i} \cdot \bar{l}_{i j ; k \ell}^{(d, h, n ; \boldsymbol{p})}=\bar{l}_{i j ; k \ell}^{(d, h+1, n-1 ; \boldsymbol{p})} \\
\bar{\eta}_{j} \cdot \bar{l}_{i j ; k \ell}^{(d, h, n ; \boldsymbol{p})}=(-2)(-h-n)(-h-n+1-d / 2) \bar{I}_{i j ; k \ell}^{(d, h, n-1 ; \boldsymbol{p})} \\
\bar{\eta}_{a} \cdot \bar{l}_{i j ; k \ell}^{(d, h, n ; \boldsymbol{p})}=\bar{l}_{i j ; k \ell}^{\left(d, h+1, n-1 ; \boldsymbol{p}-\boldsymbol{e}_{a}\right)}
\end{gathered}
$$

Upshot: We know the exact action of the embedding space differential operator for any quantity of interest!

Tensor Structures (cont.)

- Set of all ${ }_{a} t_{i j k}^{12}$ forms basis for a vector space
- Equivalently, seen as intertwiners contracting four irreps into a singlet:

$$
{ }_{a} t_{i j k}^{12}=\left(\hat{\mathcal{P}}_{12}^{\boldsymbol{N}_{i}}\right)\left(\hat{\mathcal{P}}_{21}^{\boldsymbol{N}_{j}}\right)\left(\hat{\mathcal{P}}_{12}^{\boldsymbol{N}_{k}}\right)\left(\hat{\mathcal{P}}_{21}^{n_{a} e_{1}}\right) \cdot{ }_{a} t_{i j k}^{12}
$$

- Fourth representation: Symmetric traceless
- Purpose: To restrict the ${ }_{a} t_{i j k}^{12}$ onto the appropriate irreps \boldsymbol{N}_{i}, $\boldsymbol{N}_{j}, \boldsymbol{N}_{k}$, and $n_{a} \boldsymbol{e}_{1}$

