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Why Study Conformal Field Theories (CFTs)?

CFTs describe universal physics of scale invariant critical points:
@ continuous phase transitions in condensed matter and
statistical systems

o fixed points of RG flows

Provide a handle on
@ Universal structure of the landscape of QFTs
@ Quantum gravity via the AdS/CFT correspondence and
holography
@ String theory

@ Black holes



The Conformal Bootstrap

The conformal bootstrap program seeks to systematically apply
@ conformal symmetry
@ crossing symmetry
@ unitarity/reflection positivity

conditions to map out and solve the space of allowed CFTs

1.8 Disallowed

3d Ising?

Allowed

1.0 N N W S W WSS WSS A
0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64

Figure: Allowed region for 3D Ising Model [EI-Showk, Paulos, Poland,
Rychkov, Simmons-Duffin, Vichi, '12; '14]



The Ultimate Dream

@ Tremendous progress both on the numerical and analytic

fronts! e.g. Ferrara et al. (1971, 1973), Dobrev et al. (1976, 1977), Polyakov (1974), Dolan &

Osborn (2001, 2004, 2011), Poland et al. (2012), Simmons-Duffin (2014), El-Showk et al. (2014), Kos et
al. (2014, 2015, 2016), Costa & Hansen (2015), Rejon-Barrera & Robbins (2016), Echeverri et al. (2016),
Costa et al. (2016), Fortin & Skiba (2016, 2019), Karateev et al. (2017), Poland & Simmons-Duffin
(2019)

@ Dream: to classify and solve the entire landscape of CFTs and
predict their observables

CFTs are signposts in the landscape of QFTs!




The Ultimate Dream (cont.)

QFTs: Renormalization group flows from UV to IR fixed points

uv

o Large classes of QFTs as relevant deformations of small
subset of CFTs



Outline: Part |

Part I: Setting the Stage
@ A Little Bit of Background on CFTs

@ Goal: Efficient Rules for Arbitrary Conformal Blocks
@ Embedding Space OPE Formalism
@ Three- and Four-Point Functions

@ Bases of Tensor Structures



Outline: Part Il

Part Il: The Rules

@ Tensor Structures for Towers of Exchanged Operators

Projection Operators to Exchanged Representations

Diagrammatic Notation

Rule for Rotation Matrices

@ Rule for Conformal Blocks
@ Examples

@ Conclusions and Outlook



What is a CFT?

A special quantum field theory invariant under the conformal
transformations:
g,;y(xl) = c(x)0w
Jacobian:
Ox'H
=S = b(x)M*,(x), M € SO(d)
@ Preserve angles
@ Locally look like a rotation followed by a scale transformation
X — Ax




The Spectrum of Operators

Two kinds of operators in CFTs:
o quasi-primaries [Kj,, O®)(0)] = 0: transform simply under
conformal transformations, e.g.
x—=x, 0XW(x) = O (x) = b(x)"20M(x)

@ descendants: don't!

@ Complete spectrum of operators: primaries+infinite towers of
descendants

@ Organic observables in CFTs: M-point correlation functions of
operators, (O®)(x1)... 0™ (xp))



What are Conformal Blocks?

@ Well-defined objects appearing in expansion of the four-point
functions

@ Capture contributions of particular exchanged operators in the
OPE

@ Similar to an expansion in spherical harmonics Y;” but for
CFTs



Conformal Bootstrap

Impose crossing symmetry

@ O3
2 >>=O< =2 o
o O,

O, Oy

Interchanging x; <> x3 gives the crossing symmetry condition:

> ogn(u,v) = Noga(v,u)
Al Al



Our Goal

Goal: Efficient Rules for Arbitrary Conformal Blocks

@ Approach based on embedding space OPE formalism given in
Fortin, VP, Skiba (2019)

@ Conformal blocks expressed as specific linear combinations of
Gegenbauer polynomials in a special variable, with a unique
substitution rule ascribed to each polynomial piece

@ Applying each rule term-by-term directly generates the
complete conformal block in terms of a four-point tensorial
generalization of the Exton G-function (o scalar exchange
block in (55SS))



Our Goal (cont.)

Procedure for determining a given block:

@ Writing down the relevant group theoretic input data: the
projection operators and tensor structures

@ Identifying the specific linear combination of Gegenbauer
polynomials along with the associated substitution rules for
each piece

In this work: Wish to make this approach systematic = Derive a
set of general rules



Embedding Space OPE

Replace the product of two local quasi-primary operators by an
infinite sum of operators at some point on the lightcone:

qk at.l2k
0i(m)O;(112) = (T )T T) - ZZ i quk
o a1 771 772

D" (Tiaw, T) + Oilne)

where

1
E(Ti‘f‘Tj_Tk)y hijk:_E(Xi_Xj‘i‘Xk)v

10 = Ao — So, xo = Ao — €o, §o = So — [So]

Pijk =

@ Most convenient form for computing M-point correlation
functions



The Embedding Space

Embedding space M9+2:

@ A natural habitat for the conformal group:
(d + 2)-dimensional hypercone where operators live

0’ = gagn™n® =0

@ Light rays in one-to-one correspondence with position space
points



The Embedding Space (cont.)

Coordinates on the hypercone:

A

= (et

nd+2)

o A" identified with n for A > 0
Connection to position space:
xH = o
_nd+1%_nd+2
In the embedding space,
@ Conformal transformations act linearly: Conformal group

becomes like Lorentz group!

@ All operators in d-dimensional CFT need to somehow be lifted
to M9I+2,



Essential Ingredients of the Formalism

e OPE differential operator Dig’h"fr"a/z’"a)

Projection operators 75,'1\'

Half-projection operators 7'1ng

Tensor structures 5t~

. . AB
Special metric Aij



OPE differential operator

OPE differential operator Dg;’h"jr"a/z’"a) given by
1 2(h+n) A A
rD('d,h:”)Al An — 7HD( Al L. 0’ n7
! (m-m)z " 7 ’

D = (ni - nj)0F — (d + 20 - 9;)n; - 9

@ Explicit action of this operator known for any relevant
quantity!

o Consequence: Its action can be accounted for by simple
substitution rules on specific quantities

@ Useful for computation of conformal blocks

Ferrara et al. (1971, 1973), Fortin, Skiba (2019)



Projection Operators

@ Projection operators: 73,')' in place to restrict operators to the
proper representations

Operators satisfy the essential properties:
O the projection property PN . PN = (5,\,/,\,75”,
@ the completeness relation 3, fixed PN =1 — traces,

© the tracelessness condition
g PN=ry.PN=pPN.g=PN.~=0

with n, the total number of vector indices



Half-Projection Operators

o Half-projection operators (TN)4 0 to general irreps N
r—1 r—1
n=25=2% Ni+N,, n, =Y iNi+r[N,/2]
i=1 i=1

@ J spinor index only present for odd N, in odd d
@ Encode transformation properties of operators ON, ON ~ 7N

N _ N\Stiny 1 AN
Oal“‘an - (7— )al...an Oﬂl"'ﬂnvls’

Op s = (T2 SOR,

H1ee iy M1 fhny 0 Q1O



Half-Projection Operators (cont.)

@ Essentially square roots of projection operators:

Tn+ TN =PV
@ Are transverse objects to match the transversality of operators

@ Serve to translate the spinor indices carried by each operator
to “dummy” vector and spinor indices



Tensor Structures

Tensor structures at,-},% are
@ Determined by three irreps of operators in 3-point function
(ONioN; ON«)
@ Serve to intertwine N, Nj, and N into a symmetric
traceless representation
@ Number Ny of symmetric irreducible representations

appearing in N; ® N; ® N matches number of OPE
coefficients

@ Set of all at,-},% forms basis for a vector space



Embedding Space Metric

For general irreps of the Lorentz group, necessary to properly
remove traces!
e For this, require a new embedding space metric:
nfnf  nfaf
(mi-my) (i - )

AB __ _AB



Embedding Space Metric (cont.)

Special metric is doubly-transverse and symmetric:

AB _ 4BA _ 4AB _ 4BA

AB AB
niaAj~ = njaA;” =0,
AC B AB
Same trace as in position space:

.A,'J'AA =d



From Position Space to Embedding Space

Building blocks:

o g

@ cHiid

o ML Hn
Relationship between position-space and embedding space
quantities:

A B B, A
g A/142.‘3 _ gAB M T’k
- )
(m-m) (m-n)
1 ! Al 1 Al A
K1 ftd AvcAd = AoArAgAy ...
€ — €1o (171 ] 772) 771A6€ 772Afj+1A12AQ A12A/1
M1 fon Ar-An _ FAL-AL An A1
0% =T =T A, A12A,1 Vne{0,...,r}.

Ay

9



Three-Point Correlation Functions

Most general embedding space 3-point function:

(Oi(m)Oj(12)Om(n3)) =
(TN A (T 1) P (T ()
(m .772)%(T,-+Tj—xm)(m ) 773)%(><,-—><,-+Tm)(772 ) 773)%(—x,-+x,-+xm)
Nijm .
: Z aCijm(g(lg‘m){aA}{bB}{eE}

a=1

° (g(iilm){aA}{bB}{eE} - “3-point” conformal blocks



Four-Point Correlation Functions

Most general embedding space 4-point function:

(0i(m)O;(m2)Ok(13)Oi(n4)) =
(Toy )14 (T 1) BoH (T (Ceh (T (De)
1 1 1 1
(1 - m2)2%%2(n1 - 03) 22 (1 - 1a) 2% (13 - ma) 293

Nijm Nigm

D3 s botsam( a‘“,]l ){aA}{bB}{cC}{dD}

m a=1 pb=1

with

a2 = (i = Xi + 7+ x5), 13 =(Xi — Xj+ Xk — X1),
aw=(Xi—Xj — Xk +X1), 4= (=Xi+Xxj+Tk+T)

° (%(ZHZ]‘k’){aA}{bB}{CC}{dD} - "4-point” conformal blocks



Bases of Tensor Structures

Two kinds of bases arise naturally in the context of the formalism:
@ OPE basis (a
@ Three-point basis [a

Three-point blocks in the two bases related via rotation matrices

Nijm Nijm
ijlm _ -1 ij|lm B
<(¢(3| B Z(Rijm)aa/g[a/‘ » aCjjm = E a’aijm(Rijm)a/a
a'=1 =1

where ;ajjm are the associated 3-point function coefficients,

implying
Nijm Nijm

iim _ iim
DGy = D avimy

a=1 a=1



Bases of Tensor Structures (cont.)

@ Three-point basis [a is the natural one for 3-point functions!

@ 3-point conformal blocks in this basis:

g[gl‘m = il3 - T aF (A2, T12, €12; A2 - 773)

o 73 - [ appears only if £, = % i.e. the exchanged quasi-primary
operator is fermionic

Arbitrary 3-point functions simply obtained by enumerating basis

{aFlﬁ,} made from

o Ap's
("] r12'S
(] 612'5

o Ajp-73's



Bases of Tensor Structures (cont.)

@ Conformal blocks feature simplest form in mixed

OPE-three-point basis: %71’ (Fortin, VP, Skiba (2019) )

@ For the conformal bootstrap: most convenient to work in the
pure three-point basis

@ Pure three-point blocks obtained from mixed ones via

Nijm
ijmlkl ) i m kil
G = 2 (Rim)ar Y3y
a'=1

So, strategy is to determine

@ Mixed basis blocks %(Zmlkl

@ Rotation matrices (Rjjm)aa’



Tensor Structures for Towers of Exchanged Operators

o Consider tensor structures for exchanged towers of
quasi-primary operators N, + e

o If seed irrep N, + £ nine1 can be exchanged, so can N, + fe;
for any £ > {pmin
Idea:
@ Take ¢-dependence into account once and for all (fixed)
@ Just compute seed part N, + {nine1 (varies)

@ Both N, and /i, depend on the irreps of the operators of
interest



Tensor Structures for Towers of Exchanged Operators

(cont.)

@ Therefore, for exchanged quasi-primary operators in
N, + le1, three-point basis can be separated as

0—i
ka/ Jm4-l = ka/ m+1b(“434 772) %

12 0— Ia _ Z*"a
FU mrt = aFijmyi, (A2 - 73) — atij,m+£ = atU,m+ia(A12)
with

° (Asa-TR)gy,, - (Asa-i)ey

o (A12-13)E,,, - (A2 T3)E,

the symmetrized /-dependent parts of the respective tensor
structures



Tensor Structures for Towers of Exchanged Operators

(cont.)

2 and ,F3*

@ “Special” parts of tensor structures ,t+ s

U7m+i2
fixed by knowledge of the specific irreps in question

@ OPE basis obtained from three-point basis by replacing
Az - i3 = A2

@ with the extra F index contracting with the OPE differential
operator

For example,

(A2 M)E,,, - (A2 M)e, = Avzel R Agr,



Tensor Structures: An Example

Case of symmetric traceless fe; exchange in (SVSV): Tensor

structures are

b=1: (bF & mae){cCy (oD} {erEny = (Asa - 712) p[(Ass - 712) n]*

— (bta mye){cCHdD e E7y{Fry = Asaprr (Azagren),
b=2:  (6Fiimee)iccy{aniiereny = Asaper[(Asa - f)en]

= (bt mit) {cCH DM e EM{F} = A34DE1”(A34E”F”)€_17
a=1:  (FP)earesiee) = (A2 - 73)al(Aw - 73)e]

m Ee}{F
- (atiJl'Z H){aA}{bB}{ = AlZBF(A1E2F)£7

a=2: (aFoms) (o} {bB) {eE} = Ar2E [(A12 - 73)E]

m Ee}{F _
= (aty” +€){aA}{bB}{ HEY = A, B (AF)



Tensor Structures: An Example (cont.)

Only interested in information about the special parts

b=1: np="{+1, ib =0, (btem)DF7 = AsapFr,
b=2: np="0—1, ip=1, (b8} my1)DEr = Asaper,
a=1: ng=~0+1, a=0, (at12m) = Apg’,
a=2: ny=»~0-1, =1, (at; t2 mH) B = A"



Tensor Structures: An Example

Case of e, + fe; exchange in (SFSF):

b=1:  (bFmio)icciiapyierery = (G aer[(Asa - )]’
— (bt mre){cci{aDy (e ey (Fry = (G )der (Asagren)’,
b=2:  (bFimie)iccriapyierery = (M2 - TaaCr ) der [(Ass - 72) r]”
— (btl%ﬁm-&-f){cC}{dD}{e”E”}{F”} = (T34 C7 1) der (Azagren)f

a=1:  (Ffmi) e peiee; = (G Mbel(Arz - 73)e]’

N ( t12,m+€

Ee}{F
atjj ){aA}{bB}{ HE 5be(A1E;)Z

a=2:  (aFjmie)aapioByieey = (3 - T12G Mbel(Ar2 - 73) €]’

m Ee}{F e
= (aty” —M){aA}{bB}{ HEY = (1) pe(Af)!



Tensor Structures: An Example (cont.)

Only interested in information about the special parts

b =1: np = 67 ib = 0) (bt/?/‘tn)de” = (CFl)de”a
b=2: np = + 17 ib = 07 (btléﬁn)de”f:” = (r34F” Cr_l)de”v
a= 1 . ng = g’ ia e 0, ( t32m)be — 5be’

a=2: ny=4¢+1, i =0, (at 12m)beF = (rf2)be-



Projection Operators to Exchanged Representations

@ Projection operator to exchanged irreps appears explicitly in
conformal block

@ Need PN’"Hel

Useful to decompose operators as

Nm+e Np+ecer S(—E)er
“ Z'Q/f (d, ) Q13\t elP13\d+d

o Coefficients <%(d, ) are constants
@ Sum is finite and /-independent

@ Number of terms depends on irrep N,



Projection Operators to Exchanged Representations (cont.)

@ Tensor quantities Qﬁmf&el encode information about the

special parts of the irrep N, + £: €1

e o(d,!) and Qg‘ m i1 fived by details of specific exchanged
irrep

@ Remaining indices carried by shifted projection operators for
some d’ and ¢’

[¢/2] /
(Pf’el ) E/'E] Z (=€)
13|d") E}--E{ £ 22il(—'+2 - d')2);
(E/Ey Ej;_4E5; Eji E}l)
X Aqz( E’E’-A13 - Awsey AL “41352’,“ N .A1352) '

@ Shifted projectors not traceless when d; # 0
@ Special indices in special parts need to be extracted

@ For this, derived general index separation result for Pf;é,



Projection Operators: An Example

The projection operator to e + fej can be decomposed in terms
of shifted projectors as (in position space)

t (dy,0e) (d, 0) o
1 (2,0) 25 8, By
2 (41) as & 8,y " B
3 (4,1) 2 g, “ig, 8"
4 21 - g, e
5 (42) —taniey ane e, e
8l 18, [y{g Ué]g“/“/
6 (4,2) _2(é+2)2(e£28_+11)7d/2) e ,M
+g[”{“/g[y1 V2]gy2] ”/gw>




Diagrammatic Notation

Introduce convenient diagrammatic notation for index separation:

@ We symbolize shifted projection operator by the vertex

pl {E"} _
(Plg\ld){E/} - F

@ Solid, dotted, dashed lines represent metrics of the form
= 1/ .
Azerer, ASE", and Aj5pE7, respectively
@ A line is associated to metrics with one special index, a loop
to metrics with two special indices



Diagrammatic Notation for Separation of Special Indices

For example, the index separation identity

A {E"} _ (E" (5(6-1) {E"})
(P13e|1d){5/} - A13Es’ (P13\d+;1){E’}

EVE" (—2 E"
A13E5'(E’~Ag3 (P§3|dl;1){E’}){ )

T ir2_dp2)

is represented as



Rule for the Rotation Matrix

Can determine the rotation matrix from the relation

Nij,m+e
e _ _
g(’.;\lm > (Rjmyd)az 3 T o Fifomio(Ar2, T12, €10 Ao - 773)
a'=1
Nij,m+e
= Z (R,-f,}nw)aa/ i3+ T o P, (Ar2, T12, €125 Arg - i3) (Arz - 713)
a'=1

using the symmetry properties of the irreps of the three
quasi-primary operators in question



Rule for the Rotation Matrix (cont.)

Rotation matrix determined from

Nij,m+2
> (Rjmsd)aa (a Fiomsi, )aay b8y geEr(F) (Ar2 - 713)
a'=1

= (-1 G2 Y aay sy e e ry (GTFGTY)

> Do g
3k (q,r0,r3,50,5,t)

r0,13,%0,53,t>0 go,q91,92,93>0
E' E’ E' E’
o(1) o(rg) =" (rp+1) _Eo(ro+r3) ( (Z\so(=Z\s
X E :gEgm " EE, ) "3 3 (8¢ )*(715)™
o

Z"T+la +2&m+na—La—rg—r3—sp—s3 )

= La—sp
X S(q07q17q27q3)En","+ia (_772E) a

—r
o



Main Elements

o Totally symmetric S-tensor: structure built from g's, 715, s,

n3s
Ap--Ag (A1A2 Aogo—1A2gy =200+1 —A2qy+q;
—= oo 0 q0 PPN
(q0.q1.92,03) ~ & £ " h
—A2qp+q1+1 —A2qy+a1+a2 =A2q0+q1 +ap+1 _Az)
X1 E/P) U] /I

G=2q0+q1+q2+ g3

E/

o(nl )’

e Z indices Z € {E’(

ny—La+2€m
aro+r3+1)"" Fa a 5}

i Y .. . .
R ijlm-+ coefficients comprised from various
(q:r07r3750:53’t)

Pochhammer symbols, e.g.
(AITH’A@ + n\r/n + é-m + e - rO)hU,m+g+na/2—€+ia—so+t—qo—q1



Rule for Conformal Blocks in the Mixed Basis

Conformal blocks in the mixed basis (a|b] given by

m 20|kl
G2 any By (D) = Zﬂft(d 0 Q)(J)

Jayjb>0
(_Et)ia_ja(_gt)ib_jb(_e + gt)ja(_g + gt)]b
(=0)i, (=0,
o I _2)r3’+r§’£/!
-1 O—0 —iy+r{+r (
D DR e T,

rr'r’" >0
r+2rf+r{+ri=ja
r42r 4 41 =jp
T

%.(d.-‘rdt,é—ft)(r’ r/’ r// (Ce(/d’/Z—l)(X))

ij|m-+e|kl

Ja:Jb s(a|b) (tyjaa.jbyr7r/7r//)



Rule for Conformal Blocks in the Mixed Basis (cont.)

With the associated substitution rule

Gillm+elkd
Selpy  (Edasderro b 1) D aFaghg’ gt = Symigy (e

{ e}{ }(gEsEs)ro(SESESI/)r[(S . 774)E5]r2,

Eur]_/ F114€m priny—L+ip prife—ip+ip
S

_1\26m 12m+la
(1P G )

(GU|m+£|kI >

gt /a+Ja
(&' —£4-2r§,na—£,nf,ny,ni) (77 )

(Es//ibfjb E//Zt*"b*jb)E//”vm e
eE”’vn (Eét*iaJrJ'a Es'-a 7-’-3)

Fna7€+iaEsr],-
— nT+4: ANm+Lie
(Fpriz - TS Q™ Ten)

[(72 - S)51% (85 5)S (518 i, ) {cCy (DM e E{Fry (Asagrpr) o0



Main Elements

o Gegenbauer polynomials C,S)‘)(X) in the special variable

(g — a2)xq — (a3 — a2)x3

X =
2 )

u
X3=—, Xa=U
v

ijlm—+-€) kI
(n1,n2,n3,n4,n5)A1--An

Exton G function that appears in (S5SS) scalar exchange
blocks

ijlm—+-€) kI
°
G(n1,n27n3,n4,n5)A1~~A

— related to tensorial generalization of

totally symmetric in all of its indices



Main Elements (cont.)

@ Special combination of Gs is ubiquitous:

B _ _ B ijlmtekl  ~ijlmtelkl  -B
SpA° = 8a G(o,o,o,o,o) G(0,0,2,070)A771

_ ijlm+L|kl \B ijlm+Lkl \ B
~1134(G(00.220))" T (C(004.20))4

@ Appears either by itself or via contractions with embedding

space coordinates 7, 7, €.g. as in (72 - S)&', (S - 7a)E,

o [pus, 73 - I present only if exchanged operator is fermionic,
Em = %

@ Special part Qg"”tﬁfel of projector ﬁgm+€e1 contracts with

Gs, Ss, and tensor structures



Properties of G

Substitution rules necessitate the multiplication of several G's
according to

ij|m-+£| kI ij|m-+£| kI
(n1,n2,n3,n4,n5)A" = (my,mz,ms,mg,ms) B™
_ ~ijlmtelk

= T(mA+my,ny+ma,n3-+m3,ng+my,ns+ms)A"B™

Moreover, G satisfies the contiguous relations

flmilk
" (ny,n,n3,n4,n5) T 00
— ij|m+-£|kl _ ~ifmLl kI
1 (nl,ng,ng,n4,n5) - (nl,ng,n3f2,n4,n5)’
— ij|m+-2|kl _ ~ifmLl kI
" (n1,n,n3,na,n5) T (n42,m2,n3,n4,05)
— if|m+-£| ki i mA-Llkl
Tl ) (nl,n27n3,n4,n5) - (n17n2,n3—2,n4—2,n5)’
s - ijlm—+-2|kl _ Gij|m+€‘k/

(n1,n2,n3,n4,n5) (n1,n2,n3—2,n4,n5+-2)

@ Useful for facilitating contractions



Example: ¢e; Exchange in (SVSV)

With the aid of diagrams, it is easy to extract indices as needed

a=2b=2: 7:"/(:el = \J—~ + \-J- +)\--- +2><).:\_---. + \_.‘:'I-



Example: ¢e; Exchange in (SVSV) (cont.)

These directly lead to four conformal blocks expressed in terms of
Gegenbauer polynomials

gilme e _ ﬁ (C,_fd/Q_l)(X))s(lm) )
R e Gy )y, * s (€E200),,,
S e (Cﬁ/f)(x )) . ((d/z)t)ll (¢ d*/;)(x))sfzm |

. ﬁ ( R X))szm s (CW (X)) b

=1 (d/2 1) (E —1)! (d/2)
+Z(d/2+1)g 2( ' X)) . é(d/z)z (C x ))5(62|2).



Example: ¢e; Exchange in (SVSV) (cont.)

A specific substitution rule is ascribed to each Gegenbauer term.

For example,
1 . S _S3 _S4.r3_h ij|m+-£|kl

Sap) F 0203’ X’ = G131 _1)gps

1 . S _S3_S4 I3 _r4 — ij|m--£]kl
S(12) © 205 Xg Xyt — (72 - S)DG(_171’07070)B,

1 . S _S3_ sy I3 _mn — ij|m+-2|kl
S(2|1) - Qo Oz Qg XXy = (S 774)BG(—17—1,2,0,—2)D7
Gilm+lki

2 . S _S3 5S4 .13 _nIn
Sy - X 3 X3 X = G 131 1)8D



Example: ¢e; Exchange in (SVSV) (cont.)

Rotation matrix for this case:

-1 _iflm+e ijlm+-¢
(Rjm+)11 = 1%(0,00,0000.10) T 1%(00,01.00000)

1 _ijlm+e ij|m+£
(Rijm+)12 = 15(0,00,000.1,0,0) T 1%(0,0,0,0,00,1,0,1)°

-1 _ djlme L lm+e
(R,-J-,m+g)2,1— 2K(0,0,1,0,0,0,0,1,0) ~ 2%(0,0,1,0,0,1,0,0,0)

_L ilmee
22"(0,0,1,1,0,0,0,0,0)"

1 _ij|m+e _ djilm+e

(Rij,m+€)22 = 2R(0,0,0,0,1,0,0,0,0) ~ 2/%(0,0,1,0,0,0,1,0,0)

ij|m+¢ ij|m+¢
—2K(0,0,1,0,0,0,1,0,1) T 2(1,0,0,0,0,0,0,0,0)



Example: e, + (e; Exchange in (SFSF)

Projection operator to e, + fes:

t (di,lr) h(d,?) Q¢
1 (2,0 1 5,
2 (21) smram )

/

Since i = i, = 0 for all tensor structures, no need to extract any
indices

: Jer pler Jerter5((—1)er
Va,b: AL Prsjgrn T %C03p Pryjayo

er
131 % 13)2



Example: e, + (e; Exchange in (SFSF) (cont.)

All four different blocks have the same form:

Cilmrak (d/2)
Vab: 9N = (ci¥Px))

¢! (d/2)
+2(d/2)4 (Cf—lz (X)>

1
*(alb)

2
*(alb)

But different substitution rules due to the tensor structures and
the different values of n, and ny, e.g.

.. F//2
1 . S) S3 _S4 .13 _ra — T ij|m+2|kl
s - 0303 xg’xt = —(Tpri3 - T TR G 7 )bg (G(o,o,4,3,71)

- . Z kI F//
= 2T G g (G('{)‘,'(;;f,—l))



Example: e, + (e; Exchange in (SFSF) (cont.)

Rotation matrix for this case:

-1 _ ij|m—+2¢
(Rij,m+£)172 - (_l)rl’i(o,o,l,o,o,o,o,o,o)’

-1 [ 1\r+1 ijlm+¢ _1 ijlm+¢
(Rjmio)21 = (=1) [2’“(0,07170,0,0,0,1,0) 52/(0,0,1,0,0,0,1,0,0)
1 ii .
L jlmAe ij|m+-£
52/(0,0,1,0,0,0,1,01) * 2(0,0,1,1,0,0,0,0,0)

il m-+t.
+d2”(1,0,0,0,0,0,0,o,0)] ;

(Rif,rlnH)ZZ =0.

where r is the rank of the Lorentz group



Conclusions and Outlook

@ Established a set of efficient rules for determining all possible
four-point conformal blocks in the context of embedding
space OPE formalism

@ Require knowledge of fundamental group theoretic quantities:
projection operators of external and exchanged quasi-primary
operators

@ Projectors imply two tensor structures for left

(ati}2’m+£){aA}{bB}{Ee}{F} and right

4
(btl?hm—ké){CC}{dD}{e”EN}{F”} OPE
@ Input data: Projection operators and tensor structures

@ Rules allow us to generate global conformal blocks for any
exchanged Lorentz representation



Conclusions and Outlook (cont.)

@ Conformal blocks given in terms of linear combinations of
Gegenbauer polynomials in a specific variable X, coupled with
associated substitution rules

@ Introduced diagrammatic notation to easily determine
appropriate linear combinations of Gegenbauer polynomials

@ Blocks have simplest form in the mixed OPE-three-point basis

@ For bootstrap, need to change to pure three-point basis =
rotation matrices

@ In future: Use these rules to derive blocks for 4-point
functions of conserved currents and energy-momentum tensors
and other operators of theoretical interest



THANK YOU!



Backup Slides



What is a CFT?

A CFT is invariant under the conformal group SO(1,d — 1):
@ Poincaré algebra
o dilatations

@ special conformal
transformations

Conformal algebra:
[ na M/\p] = _(S,LLV))\(SMép - (S,uzl)p(sM)\(Sa

[M v P\] = _(SMV)APP,D; M, uvs Ky = _(Swf))\pK

P
['D/u D] = iP,, [ ,D] = —iK,, [PM, K, = 2i(gWD - I\/IW)
where

(Slw))\p = i(éu’\éyp—éuf’éy)m [Sps S3p] = _(SMV)/\XS/\’/J_(SW)pplsx\p’



The Spectrum of Operators

Two kinds of operators in CFTs:
o quasi-primaries [Kj,, O®)(0)] = 0: transform simply under
conformal transformations, e.g.
x—=x, 0XW(x) = O (x) = b(x)"20M(x)

@ descendants: don't!

@ Complete spectrum of operators: primaries+infinite towers of
descendants

@ Organic observables in CFTs: M-point correlation functions of
operators, (O®)(x1)... 0™ (xp))



The Embedding Space

Embedding space M9+2:

@ A natural habitat for the conformal group:
(d + 2)-dimensional hypercone where operators live

0’ = gagn™n® =0

@ Light rays in one-to-one correspondence with position space
points



The Embedding Space (cont.)

Coordinates on the hypercone:

A

= (et

nd+2)

o A" identified with n for A > 0
Connection to position space:
xH = o
_nd+1%_nd+2
In the embedding space,
@ Conformal transformations act linearly: Conformal group

becomes like Lorentz group!

@ All operators in d-dimensional CFT need to somehow be lifted
to M9I+2,



A New Uplift

Uplift based on quasi-primary operators with spinor indices only
and standard projection operators (Fortin & Skiba (2019))

ldea:

e Start with a quasi-primary operator in position space @) in a
general irrep of SO(1,d —1): N9 = {N©,... N°}

o Lift it to a quasi-primary O in the embedding space in an
irrep of SO(2,d): Ng = {0, N?,... N}

@ exact for the defining representations,

@ true in general up to the removal of traces



A New Uplift (cont.)

With this,

@ Scalars uplift to scalars, spinors to spinors, i-index
antisymmetric tensors to (i41)-index antisymmetric tensors

@ Advantage: Approach treats fermions and bosons on an equal
footing

From the perspective of the Dynkin indices, everything looks the
same!

@ Uplift makes universal treatment of all quasi-primary operators
in arbitrary irreps of the Lorentz group possible.



The OPE Differential Operator: A Bit of Background

Seek most useful differential operator anJ‘-(m,ng) for quasi-primary
operators in general irreducible representations of the Lorentz

group.
@ What are our options?

@ Only consistent first order operators:

15) 0
A .
©=n W? Lag =i <UA877BUB877A>

@ Unique consistent second order operator: Thomas-Todorov

e (w0 A\ O 1 9 9
A=\ onB = 2 ) oA 2nA877587]B




A Brief History of the OPE Differential Operator

© doesn't work: Cannot generate descendants!

Left with:

o Lap
o ICxy
o (£L%)as

e With two embedding space coordinates 7; and 7, only one
independent operator well-defined on the lightcone!



A Brief History of the OPE Differential Operator

Inspired by Ferrara et al. (1971, 1972, 1973),

Candidate OPE differential operator:

pAz_ 1

. 1
i = ﬁ[—’(ni L) =g = (i - 77j)2.z4§58j5
ni - Mj

D = D Dija = (nj - 1j)07 — i - 9;(de — 4 + 26;)
= (ni - 1)) 0} — (de — 2+ 20))m; - §;



A Brief History of the OPE Differential Operator

e Candidate has many nice properties!

Notably,

2h
(D}, D3 = 7177,/‘1?3’7,
(77: 771)

[@,-,232”] = hDU , [ej,D-- | = —hD?h

ij

2(h—1)
2 — h(d +2h — 2)n'D;,

@ But difficult to work with!



An OPE Differential Operator

Motivated by last commutation relation, instead find

@ Winning candidate

A A
DYy = "%D%rthA h(d +2h—2)— i

(i - mj) (ni - )

N

@ Embedding space OPE differential operator

D('dyh7n)A1"'An DA,,

1
2h 2(h+n) A An
iilhtn” D" = ——=D:; neteen

’ "Du|h+1

Fortin, Skiba (2019)



An OPE Differential Operator

Properties:

o well-defined on the lightcone

o fully symmetric and traceless with respect to embedding space
metric gas

@ satisfies simple contiguous relations

@ very convenient, as evident from

d,h,n)A1---An A, Ap k d,h—k,n+k)A1---A,
’D:(j n)Ay 77j +1"’77j +k __ (771 UJ)ZD( n+-k)A1--An ik
1 (d.htn0) A Anii
= WDU nj R 77j .

Fractional derivative = a sort of analytic continuation



A Special Tensorial Function

Enter a special tensorial object:

léd,h,n;p)AlmA,, _ pldihn)Ar-A, H 1

' iy 1 112)P

Naturally arises in computation of M-point correlation functions!

Fortin, Skiba (2019)



A Special Tensorial Function (cont.)

In terms of homogeneized coordinates 7;:

[ERTP) — (—2)P(B)a(p+ 1 — d/2)pBr

G—qo—qi 1 (d;hip; -
E: S(q)Xm q'KU(';ke;r’;q)(Xm'y'Z)7
{qr}>0
f—,_

=n

where
Ar-Ag _ (AlA Ao —1A0q, =A2q0+1 —Azqy+a; _Ag—qp+1 —Ag)
S(q) _g(12g 2‘70 12(707]1 771 77,\/] 77/\/’

with g = 2qg + Zer qr
It's totally symmetric in all of its indices!



It's all in /!

d,h,n; s . . .
I_,(-j_k’e’” P) satisfies some convenient contiguous relations:
7(d,h,mip) _
g I,'J';ke =0,

= l—(d,h,n;p) o I—(d,h+1,n71;p)
Miijke = lijike v

_ d.hn: d,h,n—1;
- G0 = (<2)(~h— m)(—h— -+ 1~ d/2) ),

_ I—(d,h,n;p) . I—(d,h—i—l,n—l;p—ea)
Na -~ ij e = lijike

Upshot: We know the exact action of the embedding space

differential operator for any quantity of interest!



Tensor Structures (cont.)

@ Set of all at,'};% forms basis for a vector space
e Equivalently, seen as intertwiners contracting four irreps into a
singlet:
12 AN DN\ HN nae #12
atiic = (P12 )(lej)(Plzk)(P ') - atik
@ Fourth representation: Symmetric traceless

@ Purpose: To restrict the at,'}/% onto the appropriate irreps N;,
Nj, Nk, and nyeéx



