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Decay of metastable state

See, e.g., Andreassen, Farhi, Frost, Schwartz 18

False vacuum  
region True vacuum  

region

Barrier

(ground) metastable state

The classical particle moves 
along the bounce trajectory

Consider the quantum-mechanical system with the Hamiltonian
and the “tunneling” potential.

 

time
Survival probability as 

 a function of time

Classical equation of motion:

Euclidean action:

(False) vacuum boundary conditions:

One can write in terms of the bounce trajectory: 

Probability of survival of the metastable 

state is 

 

— decay rate

— suppression  
exponent

Classical 
ground state

WKB:

Turning point:
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Decay of metastable state in field theory

Coleman 77; Callan, Coleman 77

Consider the scalar field theory with the Lagrangian 

In the WKB approximation, the decay rate is

and the tunneling (configuration-space) potential

Coleman, Glacer, Martin 78; 
Blum, Honda, Sato, Takimoto, Tobioka 16 

The vacuum bounce is spherically symmetric in d+1 dimensions, 

Vacuum boundary conditions: 

Classical 
ground state

Tunneling from the 
ground state

Euclidean 
domain

Real-time 
domain

— coupling constant

(in flat space)

Turning point:
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Decay of metastable state at finite temperature

Linde 82;  
Brown, Weinberg 07

Thermal partition function implies periodic boundary conditions 

Consider the scalar field theory with the Lagrangian 
and tunneling from the thermally-populated initial state

As usual (at not too high temperatures),

Boundary conditions for the thermal bounce?

Thermal averaging:

Tunneling from an 
excited state
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Decay of metastable state via thermal activation

Grigoriev, Rubakov, Shaposhnikov 89

Field configuration triggering the phase 
transition

Static solution

Periodic bounce

At large T, one expects the decay to occur via classical thermal jumps of 
the field over the barrier.
 

In the WKB, this is described by the static solution — sphaleron.

Periodic bounces dominate at low T     —    tunneling 
Sphaleron dominates at large T             —    thermal jumps
 

Klinkhamer, Manton 84

Phase transition driven by classical fluctuations can be 
studied in real-time lattice simulations 

Exponential suppression of vacuum 
decay as a function of temperature

periodic bounce

sphalerons

Depending on the tunneling potential, the transition point can be 
smooth (“2nd order”) or sharp (“1st order”).

 

Khlebnikov, Kofman, Linde, Tkachev 98
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Out-of-equilibrium metastable state  

What about out-of-equilibrium initial states?

Euclidean time prescription is derived from the equilibrium initial condition. 

Thermal activation can be studied in real-time simulations                    . 

 

What is the corresponding WKB solution?

What WKB solution is responsible for tunneling?

It is important to understand boundary conditions. 

Anisotropic flux of radiation

Multicomponent radiation
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— initial state associated with the vacuum of free theory

— final state in the “basin of attraction” of true vacuum.

Decay probability

are eigenstates of the field operatorwhere
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Figure 4: (a) Contour C in the complex time plane for the calculation of the false vacuum
decay probability in the in-in formalism. It supports the bounce solution in theories with
unbounded scalar potential. Crosses show the branch-point singularities of the bounce.
(b) Singularities of the bounce in theories with scalar potential bounded from below. The
contour C must be deformed to encircle a pair of branch points.

squaring the amplitude and summing over final states,

Pdecay =
X

f2true

hi|fihf |ii ⌘ hi|Ptrue|ii , (2.38)

where Ptrue is a projector on states in the basin of attraction of the true vacuum. We observe

that the tunneling probability is given by the average of this projector over the initial state.

This average can also be written as a path integral over two sets of fields '(t, x) and '
0(t, x),

such that their values at tf coincide, '(tf , x) = '
0(tf , x) = 'f (x). It is convenient to think

of them as a single field 'C on a doubly folded time contour C depicted in Fig. 4a: '(t, x)

is the value of the field on the upper side of the contour, whereas '0(t, x) is its value on the

lower side. Of course, this is just the usual representation of averages in the in-in formalism.

Thus, we can write

hi|Ptrue|ii =

Z
D['i]D['0

i
]D['C] hi|'

0
i
, tiie

iS['C ]h'i, ti|ii , (2.39)

where the configuration 'C is such that it is close to the true vacuum at tf . Note that we

can freely shift the endpoints of the contour, which we will denote by t
up

i
and t

low

i
, to the

upper and lower half-plane of complex time. We choose them to be complex conjugate,

t
low

i
= (tup

i
)⇤.

It is now clear how to generalize this formula to an arbitrary mixed state described by

a density matrix %. To compute the decay probability, we have to average Ptrue with the

density matrix,

Pdecay = hPtruei% =

Z
D['i]D['0

i
]D['C] e

iS['C ]h'i, t
up

i
|%|'

0
i
, t

low

i
i . (2.40)

In the semiclassical limit, g ⌧ 1, the path integral can be evaluated in the saddle-point
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unbounded scalar potential. Crosses show the branch-point singularities of the bounce.
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squaring the amplitude and summing over final states,
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where Ptrue is a projector on states in the basin of attraction of the true vacuum. We observe

that the tunneling probability is given by the average of this projector over the initial state.

This average can also be written as a path integral over two sets of fields '(t, x) and '
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Pdecay = hPtruei% =

Z
D['i]D['0

i
]D['C] e

iS['C ]h'i, t
up

i
|%|'

0
i
, t

low

i
i . (2.40)

In the semiclassical limit, g ⌧ 1, the path integral can be evaluated in the saddle-point

14

Contour in the complex time plane for the 
calculation  of the decay probability. Thick black 

lines denote singularities of the bounce. 

where
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Bounce

It lives on the contour C, its values on the upper and lower parts of the contour are complex conjugate.  

It is real at              (turning point).   At             it describes the evolution of the field after tunneling.


It linearises in the limit                          , where it satisfies the vacuum boundary conditions.

One can evaluate the path integral in the saddle-point approximation.

As a consequence of its reality and uniqueness.

 

is the semiclassical parameter.

This leads to                           ,       

where        is a bounce.

These are the same as for the time-ordered Green’s function in the corresponding vacuum.

( + boundary terms )
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squaring the amplitude and summing over final states,

Pdecay =
X

f2true

hi|fihf |ii ⌘ hi|Ptrue|ii , (2.38)

where Ptrue is a projector on states in the basin of attraction of the true vacuum. We observe

that the tunneling probability is given by the average of this projector over the initial state.

This average can also be written as a path integral over two sets of fields '(t, x) and '
0(t, x),

such that their values at tf coincide, '(tf , x) = '
0(tf , x) = 'f (x). It is convenient to think
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In the semiclassical limit, g ⌧ 1, the path integral can be evaluated in the saddle-point
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squaring the amplitude and summing over final states,
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that the tunneling probability is given by the average of this projector over the initial state.

This average can also be written as a path integral over two sets of fields '(t, x) and '
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such that their values at tf coincide, '(tf , x) = '
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lower side. Of course, this is just the usual representation of averages in the in-in formalism.

Thus, we can write
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It is now clear how to generalize this formula to an arbitrary mixed state described by

a density matrix %. To compute the decay probability, we have to average Ptrue with the

density matrix,
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In the semiclassical limit, g ⌧ 1, the path integral can be evaluated in the saddle-point

14

Contour in the complex time plane for the 
calculation  of the decay probability. Thick black 

lines denote singularities of the bounce. 



9

Vacuum boundary conditions

The general solution of the equation

is written as it provides boundary conditions for 

 To obtain the particular solution — bounce — one should specify the time-integration contour and Green’s function:

2105.09331

The Euclidean prescription follows for initial states in equilibrium.

The time-ordered vacuum Green’s function: 

 

We can handle out-of-equilibrium and time-dependent initial states.
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Decay of Higgs vacuum
Higgs potential

tree level

RG improved

Energy 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Figure 1: Running of the Higgs quartic coupling in the Standard Model at NNLO in the

MS scheme. The RG equations are solved using the code available at [4] based on [5, 1].

Blue solid line corresponds to the best-fit values of the Standard Model parameters [6]. Blue

dashed lines correspond to 2� experimental uncertainty in the measurement of the top-quark

mass [7] and red dotted lines — to the theoretical uncertainty discussed in [3]. The plot is

restricted to the scales smaller than the Planck mass Mp = 1.22 · 1019 GeV.

is worth stressing that this RG evolution is obtained under the assumption of no new physics

interfering with the running of �. As a result, the e↵ective Higgs potential1

Vh =
�(h)h4

4
(1)

goes much below the EW vacuum at large values of the field, as shown schematically in

Fig. 2. This makes the EW vacuum metastable.

While in a low density, low temperature environment characteristic of the present–day

universe the SM vacuum is safely long-lived [2], the situation may be di↵erent during primor-

dial inflation. Indeed, most inflationary models predict the Hubble expansion rate during

inflation Hinf to be much higher than the measured Higgs mass. Thus, if the Higgs does

not have any other couplings besides those present in SM, it behaves at inflation as an es-

sentially massless field and develops fluctuations of order Hinf . Denote by hmax the value

of h corresponding to the top of the barrier separating the EW vacuum from the run-away

region. Then, even if h is originally placed close to the origin, it will roll beyond the barrier

with order-one probability for Hinf > hmax [8, 9, 10, 11, 12, 13].

1
We neglect the SM mass term which is tiny compared to all contributions appearing below.

2

Standard Model Higgs vacuum may not be absolutely stable.

Stability of the Higgs vacuum has been studied in various setups:

Vacuum decay in field theory is relevant for phenomenology.

In the present-day Universe, the decay probability is small enough. 
But this can change in extreme environments.

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia 13; 
Herranen, Markkanen, Nurmi, Rajantie 15; 
Salvio, Strumia, Tetradis, Urbano 16; 
Rajantie, Stopyra 17; 
Andreassen, Frost, Schwartz 18 …

in the Standard Model and its modifications, 
with or without gravitational corrections, 
in thermal bath and during inflation, 
near local inhomogeneities such as black holes

Standard Model running of the Higgs quartic coupling
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Black holes and vacuum decay

Planck spectrum, corrected 
by greybody factors

“The black holes are the most perfect macroscopic objects 
there are in the universe: the only elements in their 
construction are our concepts of space and time… They 
are the simplest objects as well.”

S. Chandrasekhar:

It’s a simple gravitational impurity — curved geometry

These two facts are equally important for vacuum decay.

Hiscock 87; Berezin, Kuzmin, Tkachev 88, 91; Arnold 90The problem is not new:

…but the interest has been revived recently:

It’s a simple source of (almost) thermal radiation — quantum vacuum

Gregory, Moss, Withers 14; Burda, Gregory, Moss 15, 16; Tetradis 16 
Gorbunov, Levkov, Panin 17; Mukaida, Yamada 17; Kohri, Matsui 17 … 
Strumia 23

BH features:
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Black holes and vacuum decay

Carr, Kohri, Sendouda, Yokoyama, 2002.12778

Claim: BHs can actually make vacuum decay unsuppressed. 

Intuition in favour: 

timeSmaller BHs have larger temperature:

BHs evaporate, thus probing a wide range of energy scales.

(Small) primordial BHs could be produced abundantly in the Early Universe.

The BH temperature is an observer-dependent quantity:

Close to the horizon, field fluctuations become extremely energetic.

Counter-arguments: 

                           , but this is not enough for vacuum decay: one must form  

a coherent field configuration: tunneling bounce or sphaleron.

Accelerating observers in flat space also see thermal radiation of arbitrary high T 
(Unruh effect), but the decay rate is observer-independent.

ho
riz

on

Trajectories of uniformly accelerating 
observers in flat spacetime.

Burda, Gregory, Moss: from “BHs as bubble nucleation cites” to “Fate of the Higgs vacuum”

They use Euclidean approach and look for the minimal-action configuration.
Their calculation can be improved, but what do we expect?
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BH catalysis of vacuum decay is an interesting theoretical problem with 
applications to phenomenology.

For the semiclassical analysis, we need to know vacuum states 
associated with BHs.

Black holes and vacuum decay

These are, in general, out of thermal equilibrium; also they live in a curved 
background.

We can use the general method to associate the vacuum states with the 
boundary conditions for the bounce solution.

 

 

BH entropy

Information paradox

Semiclassical gravity, Nonperturbative quantum gravity (once back-reaction is 
taken into account)…
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Black hole vacuum

Boulware

Unruh

Hartle-Hawking
Boulware 75

Unruh in  
“Notes on BH evaporation” 76

Hartle, Hawking 76

Arnold 90:

One can expect that 

“…I do not know how to handle the question of false vacuum decay 
in a nonequilibrium situation such as this one. I merely note that, 
since radiation helps the system cross the barrier, the results 
should lie somewhere between the two extremes of zero radiation 
and thermal equilibrium.” 

Eternal BH 
BH mimicker

BH in thermal equilibrium
BH from the collapse of matter
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Black hole vacuum
Scalar field in 1+1 dimensions:

The three BH vacuum states can then be specified as follows:

near-horizon 
region

asymptotically flat 
space

Right-moving 
modes

Left-moving 
modes

Define the following initial state:

Boulware:

Hartle-Hawking:

Unruh:



Black hole Green’s functions 
In the static BH background

And the general Green’s function takes the form

— reflection amplitude

— transmission amplitude

16



17

— right modes in thermal bath

— left modes in vacuum

— greybody factor

(Massive scalar) Unruh Green’s function in two dimensions:

Unruh Green’s function 
2105.09331
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— asymptotically flat space

— near-horizon region

BH metric in 1+1 dimensions:

Toy model: CGHS black hole
Callan, Giddings, Harvey, Strominger 92

is a “tortoise” coordinate

 

Tunneling system: 

Effective potential for massive scalar modes

past horizon

fut
ure

 ho
riz

on

The part of the BH spacetime 
relevant for vacuum decay

To emulate the 4d centrifugal barrier, we also add the “dilaton barrier”: 

dilation field compounding the 2d BH
dimensionfull coupling 

2111.08017

We neglect back-reaction of the tunneling field on the BH.



Toy model: Liouville potential

ϕ

ϕ

ϕ
true

V(  ) V(  )ϕ

ϕ

a b

Figure 1: Scalar potential with false vacuum at ' = 0. (a) The true vacuum exists at a
finite value of the field. (b) The potential is unbounded from below and the false vacuum
decay leads to the run-away ' ! +1.

has an exponential fall-o↵,

⌦ ⇡ e2�x at x ! �1 . (2.6)

Explicitly, we will consider the metric of a two-dimensional dilaton BH,4

⌦ =
�
1 + e�2�x

��1

, (2.7)

though most of our analysis will be insensitive to this precise form of the function ⌦(x). Note

that while the coordinate size of the near-horizon region in tortoise coordinates is infinite,

its physical size is finite and inversely proportional to �,

lh ⇠

Z
0

�1

p

⌦ dx ⇠
1

�
. (2.8)

With the choice of the metric (2.5) the scalar action becomes

S =
1

g2

Z
dtdx

✓
�
1

2
⌘
µ⌫
@µ'@⌫'� ⌦(x)V (')

◆
, (2.9)

where ⌘
µ⌫ = diag(�1, 1) is the two-dimensional Minkowski metric. We observe that the

dependence on geometry has been isolated into a position-dependent factor in front of the

potential term.

The coordinates (t, x) cover the BH exterior. This corresponds to the region I in the Pen-

rose diagram of the maximally-extended BH spacetime, see Fig. 2. To obtain this maximal

extension, one first introduces the light-like coordinates

u = t� x , v = t+ x , (2.10)

4
Some details of these solutions are given in Appendix A.

7

The scalar field potential

For the nonlinear part take the Liouville potential:
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Equation to solve:

This is hard.

Way around: find a model in which the bounce has a narrow nonlinear 
core (inner region) and a broad linear tail (outer region).

Then far enough from the core,

and one can solve the equation separately in the two regions.

inner regionouter region

 

Then we can find the bounce and the decay rate analytically, 
for all three initial vacuum states, in the near-horizon region and 
far from the BH.

to ensure the existence of the overlap region
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Toy model: results

For the Boulware and Hartle-Hawking vacua our method is equivalent to the known prescriptions of looking 
for vacuum and finite-temperature bounces. 


The catalysing effect is both due to geometry and due to excitations of the field modes by the BH. Both 
effects are closely intertwined. 

Suppression of the Boulware, Hartle-Hawking and Unruh 
vacuum decay as a function of BH temperature.

 “vacuum excitations” “curved geometry” 



where the variance of the field fluctuations is 

Stochastic regime for the Unruh vacuum

We couldn’t find the “Unruh sphaleron” analytically, but we were able to use a simple stochastic estimate:

This works in our particular model because 
— almost any relevant field fluctuation is Gaussian


— modes with relevant frequencies                  are highly populated

In general, classical simulation is needed.

 We could only find the Unruh bounce up to a certain temperature        .

This is not surprising: thermal bounces also cease to exist at               , yielding to the sphaleron.

So we expect that at                the decay proceeds via stochastic jumps.

Unruh bounce Stochastic jumps
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Reflections and outlook 

Contrary to the Hartle-Hawking vacuum, the decay of the Unruh vacuum remains exponentially 
suppressed at all BH temperatures. This result probably holds in four dimensions.

So far we focused on the semiclassical method. Real-time simulations might also be useful.

The method is quite general and can be applied to time-dependent systems as well.

Gravitational backreaction must be included at some point.



More on bounce at finite temperature

Chudnovsky 92

Garriga 94; Ferrera 95

The bounce-sphaleron transition point was studied in QM and field theory

In the thin-wall approximation, periodic bounces do not merge with the sphaleron — the transition is 1st order.
(The thin-wall sphaleron may not even exist)

They have extra negative modeBranch of p.b.

Sph. branch

Exponential suppression of vacuum decay in 
the thin-wall potential in 3+1 dimension.

This is not an artefact of the approximation.
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Figure 10: Exponential suppression of the Unruh vacuum decay as a function of BH tem-

perature TBH = �/(2⇡). Decay proceeds via tunneling in the near-horizon region at � < �U ,

whereas at � > �U it is mediated by stochastic jumps in the vicinity and far away from BH.

The critical temperature �U is given by eq. (4.4). The suppression approaches a non-zero

constant in the limit � ! 1. We consider the case of weak dilaton barrier, 0 < a < 1.

This is in striking contrast to the Hartle–Hawking case and is a direct consequence of the

lack of particles in the Unruh flux compared to the thermal state. We believe this property

to be universal and valid also for BHs in higher dimensions. It hinges on the presence of the

centrifugal barrier reducing the outgoing flux through non-trivial greybody factors. We plot

our results for the Unruh vacuum decay suppression in Fig. 10.

One point needs to be discussed before closing this section. At very high BH temperature

the Unruh flux is dominated by relativistic modes with high momenta k ⇠ q� � m that

most e�ciently escape through the barrier. Thus, the correlation length of fluctuations

lcorr ⇠ k�1 is much shorter than m�1 and further decreases with temperature. One may

ask if this leads to additional suppression of transitions compared to eq. (4.15), so that the

actual suppression grows with temperature. We now show that this is not the case, at least

in our two-dimensional setup.11

To this end, let us look at the spectrum of particles in the Unruh flux. Far away from the

BH particle occupation numbers are given by the product of the Bose–Einstein distribution

and the transmission coe�cient through the barrier,

nk =
1

e2⇡!/� � 1
· k

!
|�!|2 , (4.16)

where ! is the particle energy, ! =
p

k2 + m2, the transmission amplitude �! is defined

in eq. (C.3), and the factor k/! appears due to the di↵erent normalization of plane waves

11In higher dimensions the suppression may actually increase at � ! 1 due to the drop of the particle
flux according to the inverse area law at finite distance from the BH, see the discussion in sec. 5.
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The critical temperature �U is given by eq. (4.4). The suppression approaches a non-zero

constant in the limit � ! 1. We consider the case of weak dilaton barrier, 0 < a < 1.

This is in striking contrast to the Hartle–Hawking case and is a direct consequence of the

lack of particles in the Unruh flux compared to the thermal state. We believe this property

to be universal and valid also for BHs in higher dimensions. It hinges on the presence of the

centrifugal barrier reducing the outgoing flux through non-trivial greybody factors. We plot

our results for the Unruh vacuum decay suppression in Fig. 10.

One point needs to be discussed before closing this section. At very high BH temperature

the Unruh flux is dominated by relativistic modes with high momenta k ⇠ q� � m that

most e�ciently escape through the barrier. Thus, the correlation length of fluctuations

lcorr ⇠ k�1 is much shorter than m�1 and further decreases with temperature. One may

ask if this leads to additional suppression of transitions compared to eq. (4.15), so that the

actual suppression grows with temperature. We now show that this is not the case, at least

in our two-dimensional setup.11

To this end, let us look at the spectrum of particles in the Unruh flux. Far away from the

BH particle occupation numbers are given by the product of the Bose–Einstein distribution

and the transmission coe�cient through the barrier,

nk =
1

e2⇡!/� � 1
· k

!
|�!|2 , (4.16)

where ! is the particle energy, ! =
p

k2 + m2, the transmission amplitude �! is defined

in eq. (C.3), and the factor k/! appears due to the di↵erent normalization of plane waves

11In higher dimensions the suppression may actually increase at � ! 1 due to the drop of the particle
flux according to the inverse area law at finite distance from the BH, see the discussion in sec. 5.
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region. Instead, we approximate ⌦ with a pure exponential e2�x at x < 0 and 1 at x > 0. In

other words, we assume that the metric is exactly Rindler to the left from the barrier and

flat to the right of it. Overall, the approximate equation we will analyze has the following

form,

'00
sph

�
�
m2✓(x) + q��(x)

�
'sph + 2

�
✓(�x)e2�x + ✓(x)

�
e'sph = 0 . (3.7)

It is straightforward to solve this equation to the left and to the right of the barrier. The

solutions bounded at x ! ±1 are:

'sph

���
left

= ln


�2

 ch2(�(x � xsph,L))

�
� 2�x , (3.8)

'sph

���
right

=

8
<

:
ln


�
2
0

 ch
2
(�0(x�xsph,R))

�
, core

2�0
m

e�m|x�xsph,R| , tail
(3.9)

where �0 satisfies
�0

ln(2�0/
p

)
= m ) �0 ' m ln

mp


. (3.10)

At x = 0 the two solutions (3.8), (3.9) must be matched continuously, whereas the derivative

must have a jump due to the �-function in the equation,

'sph(0)
���
right

= 'sph(0)
���
left

⌘ 'sph(0) , (3.11a)

'0
sph

(0)
���
right

= '0
sph

(0)
���
left

+ q�'sph(0) . (3.11b)

Let us assume first that the solution on the right is given purely by the tail, i.e., the core

of the sphaleron lies deep in the near-horizon region. Then the matching conditions (3.11)

lead to the equation on xsph,L,

1 � th(�xsph,L) =
m + q�

2�
ln


�2

 ch2(�xsph,L)

�
. (3.12)

To proceed, it is convenient to parameterize q as

q =
a

ln(m/
p

)
. (3.13)

For a > 1, eq. (3.12) has a negative solution for arbitrary value of � � m, implying that the

sphaleron core is always confined to the near-horizon region. This behavior is dramatically

di↵erent from the case without barrier (a = 0) and we will call barriers with a > 1 “strong”.

Notice that even for a strong barrier q itself can be much smaller than 1.
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Decay of the Unruh vacuum

to the dilaton. We will see shortly that this coupling gives rise to the temperature-dependent

barrier in the potential for linearized field perturbations, which is similar to the centrifugal

barrier in the four-dimensional Schwarzschild spacetime. We will refer to it as “dilaton

barrier” in what follows. The small coupling constant g ⌧ 1 controls the semiclassical

expansion in the model.

In the background specified by eqs. (2.1), (2.2) and (2.4), the action (2.5) becomes

S =
1

g2

Z
dtdx

✓
�1

2
⌘µ⌫@µ'@⌫' � 1

2
⌦m2'2 � Q⌦0

M
'2 � ⌦Vint(')

◆
, (2.6)

where ⌘µ⌫ = diag(�1, 1) is the Minkowski metric. We see that the dependence on the

background is contained entirely in the (position-dependent) potential of the field '.

Let us study linear perturbations around the false vacuum ' = 0. To this end, we

neglect the self-interaction part of the potential Vint, and decompose ' using a complete set

of positive- and negative-frequency modes:

'+

!
(t, x) = f!(x)e�i!t , '�

!
(t, x) = f ⇤

!
(x)ei!t , ! > 0 . (2.7)

The equation for f! follows from the linearized field equation for ' and reads

�f 00
!

+ Ue↵(x)f! = !2f! , (2.8)

where prime denotes derivative with respect to x. This is the Schrödinger equation with the

potential

Ue↵(x) = m2⌦ +
2Q

M
⌦0 . (2.9)

It is instructive to compare it with the analogous potential for spherically-symmetric linear

perturbations of the massive scalar field in the four-dimensional Schwarzschild background,

which we review in appendix B.1. The latter admits similar form as in eq. (2.9) (with

a di↵erent ⌦), with the factor in front of ⌦0 being proportional to the BH temperature.

To reproduce this behavior, in what follows we take the mass of the dilaton BH to be

temperature-dependent,

M(�) =
M2

0

�
, (2.10)

where M0 is a constant of mass dimension 1.5 In other words, we enforce the relation between

the BH mass and temperature as in General Relativity. Using eq. (2.2), we obtain

Ue↵(x) =
m2

1 + e�2�x
+

2q�2e�2�x

(1 + e�2�x)2
, (2.11)

where we introduced q = 2Q/M2

0
. The first term in this expression describes a smooth

interpolation between the near-horizon and asymptotically-flat regions, while the second

term generates a barrier separating these regions, see Fig. 1.

5The constant M0 is subject to certain conditions ensuring that the back-reaction of vacuum decay on
the background geometry is negligible; see appendix A. Apart from this, it is arbitrary.

6

In the model with the dilaton barrier, the effective potential for massive scalar modes is given by

Define

Then, the tunneling action behaves as follows:
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Figure 12: Bounce solution describing tunneling from the Unruh vacuum far away from the
BH. Left: Profiles of the bounce (black solid) and its time derivative (red dashed) at t = 0
for � = 0.87⇤U1, where ⇤U1 is defined in Eq. (5.25). Right: Zoom-in on the central region
of the left plot. We take ln(m/

p
) = 20. The grey dotted line marks the field value 'max

at the maximum of the potential barrier, see Fig. 5.

and a Euclidean portion at �⇡/� < Im t < ⇡/�, Re t = 0 (see Fig. 7a). If

bU1 ⌧ 1 , (5.23)

the core of the bounce fits entirely inside the Euclidean part of the contour. In other words,

the matching region where (5.21) is satisfied surrounds the core in Euclidean time. This

region also comfortably overlaps with the domain of validity of the expression for the Green’s

function at close separation, which is bounded by (see Appendix B.2)

|x� x1|, |t| ⌧ 1/
p

�m . (5.24)

On the other hand, when bU1 > 1, the matching procedure in Euclidean time breaks down. It

is unclear if it can be extended to higher values of bU1 by matching on the parts of the contour

parallel to the real axis.15 A careful analysis of this issue would require studying corrections

to the core and tail of the bounce which is beyond the scope of this paper. Thus, we take

(5.23) as a conservative condition for the validity of the bounce solution constructed above.

In view of the formula (5.22), it translates into an upper bound on the BH temperature,

� . ⇤U1, where

⇤U1 =
3⇡m

4

✓
ln

m
p

+ �E �

1

4

◆
. (5.25)

We will discuss what happens at higher BH temperatures shortly.

Turning to the tunneling suppression, we need to compute the integral (2.53). Unlike

Minkowski or thermal cases, we cannot deform the contour to cast this integral into the form

of an Euclidean action. Therefore, we work directly with the contour C. The computation

15
In any case, these values are bounded from above by bU1 ⌧

p
�/m, as required for the compatibility of

inequalities (5.21), (5.24).

40

Bounce solution describing tunneling from the Unruh vacuum far away from the BH.  
Left: Profiles of the bounce (black solid) and its time derivative (red dashed) at        for         . 
Right: Zoom-in on the central region of the left plot. We take            .  
The grey dotted line marks the field value      at the maximum of the potential barrier 

Unruh bounce far from horizon

Here we consider the model without the dilaton barrier.


