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Decay of metastable state

('}

P
® Consider the quantum-mechanical system with the Hamiltonian H = am + \/[?)

and the “tunneling” potential.

v () ® Probability of survival of the metastable

(ground) metastable state
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False vacuum
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@ One can write in terms of the bounce trajectory: B = SE[‘[g]

stateis P~ e_m:
WKB: [T~ e B — decay rate
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R=23 g ’am V(2) J‘i — suppression
0 exponent
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Survival probability as
a function of time

See, e.g., Andreassen, Farhi, Frost, Schwartz 18
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Euclidean action: \S" . S A (%: ( %) + V(‘l)) il
ground state
d
Classical equation of motion: m %‘.\ - 2—\4 = - 3(— V)
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(False) vacuum boundary conditions: Q&(ico) = O

Turning point: ;lG (0)= Q
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The classical particle moves
along the bounce trajectory



Decay of metastable state in field theory

a
@ Consider the scalar field theory with the Lagrangian 0(’ =-£ ("2‘4"’) - V(P) (in flat space)

and the tunneling (configuration-space) potential

-B
In the WKB approximation, the decay rate is [T~ €

B = 5, [%)

8= Jarde (4 (4 LGB+
9« 4 — coupling constant

W - Ve =0

@® The vacuum bounce is spherically symmetric in d+1 dimensions,

Coleman, Glacer, Martin 78;
Blum, Honda, Sato, Takimoto, Tobioka 16
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@® Vacuum boundary conditions: lfe (xsw) =0
S

Turning point: (;)G (‘t = (), X) =0
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Decay of metastable state at finite temperature

4
@ Consider the scalar field theory with the Lagrangian 0(’ =-£ (QM'{’) - V(P)
and tunneling from the thermally-populated initial state

B

As usual (at not too high temperatures), P ~ e— V (‘P)
B = S‘E[‘l’g]
?rb”'{’ -v(p =0 Ey
A\
Boundary conditions for the thermal bounce? B N LF

Tunneling from an
excited state
@ Thermal partition function implies periodic boundary conditions

Ex

-E  _ )
Thermal averaging: [’ a ‘(O[E e Te ‘S'E [\OB.J ~ e‘-T-’SE[‘fG.E] ﬂ—B

— P (&4, X) = g (2.X)

Linde 82;
Brown, Weinberg 07



Decay of metastable state via thermal activation

@ Atlarge T, one expects the decay to occur via classical thermal jumps of
the field over the barrier.

~V(¢)

In the WKB, this is described by the static solution — sphaleron.

Klinkhamer, Manton 84

\
_ Esph ! — /(f’
[ ~e T R = ‘-F.Esph (T2Te) |

W Periodic bounce

Static solution

Periodic bounces dominate atlow T — tunneling

Sphaleron dominates at large T

B(T)

— thermal jumps

® Phase transition driven by classical fluctuations can be
\ studied in real-time lattice simulations

Grigoriev, Rubakov, Shaposhnikov 89

B, I

Khlebnikov, Kofman, Linde, Tkachev 98

Exponential suppression of vacuum
decav as a function of temperature

® Depending on the tunneling potential, the transition point can be
smooth (“2nd order”) or sharp (“1st order”).

Field configuration triggering the phase
5 transition



Out-of-equilibrium metastable state

Euclidean time prescription is derived from the equilibrium initial condition.

What about out-of-equilibrium initial states?

W\«.\\ r/’ ET_Tj Ta T, ET_Tj
@ ~ — — =
,_./ —] —
- — —
— e — [——
Anisotropic flux of radiation

T

T T

Multicomponent radiation

Thermal activation can be studied in real-time simulations (T2, 'T'c) :

What is the corresponding WKB solution?

What WKB solution is responsible for tunneling?

It is important to understand boundary conditions.



Transition amplitude
¢ 9”[,34'= <fli>

where | ¢> — initial state associated with the vacuum of free theory
| > — final state in the “basin of attraction” of true vacuum.
ST ] .
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where '\(} (+,x) | ¢,t) = P |9t ) areeigenstates of the field operator
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@® Decay probability f),(my = 2_.\ '#E,f '5#:
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Contour in the complex time plane for the
calculation of the decay probability. Thick black
lines denote singularities of the bounce.



Bounce

® One can evaluate the path integral in the saddle-point approximation.

g & 41 s the semiclassical parameter.

This leadsto [T ~ e B R = -t S' [‘FG] ( + boundary terms )

where Pg is a bounce.

® It lives on the contour C, its values on the upper and lower parts of the contour are complex conjugate.
As a consequence of its reality and uniqueness.

ltisreal at £= '{:J; (turning point). At > tf it describes the evolution of the field after tunneling.

Ot/ bow

® Itlinearises in the limit + » +; , Where it satisfies the vacuum boundary conditions.

These are the same as for the time-ordered Green'’s function in the corresponding vacuum.

i@ C
\N \Z
tl_low (P/

Contour in the complex time plane for the
calculation of the decay probability. Thick black
lines denote singularities of the bounce.



Vacuum boundary conditions

2105.09331

A LN
@® The time-ordered vacuum Green’s function: GX(;,{', )'?:‘(:’) = 1—3 < "T’(‘f(f‘)() ‘P(-l:',g'))>x

4
("= m?) G, (Rt ¥e) = 1S (-7 St

/
@ The general solution of the equation f)r')rtf) - m'l\p - Vin{;(lp) = ()
is written as it provides boundary conditions for (P (+, X)

P, x) = -t S de dx' G (% ! x") 'V’;;(\e (! x))

@ To obtain the particular solution — bounce — one should specify the time-integration contour and Green’s function:

g X)) = -1 S ol(-.lolxlgx (%, t/ x‘)V;‘; (g (+! x'))
¢

—» The Euclidean prescription follows for initial states in equilibrium.

—» We can handle out-of-equilibrium and time-dependent initial states.



Decay of Higgs vacuum

Higgs potential

Vacuum decay in field theory is relevant for phenomenology. tree level

® Standard Model Higgs vacuum may not be absolutely stable.

In the present-day Universe, the decay probability is small enough. === -
But this can change in extreme environments.

RG improved

® Stability of the Higgs vacuum has been studied in various setups:

in the Standard Model and its modifications,
with or without gravitational corrections,

in thermal bath and during inflation, 0.10
near local inhomogeneities such as black holes 7

ag(Mz) = 0.1185 :
my, = 125.7 GeV
my; = 173.34 £ 1.52 2 oexp) £ 1 (theor) GeV

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia 13;
Herranen, Markkanen, Nurmi, Rajantie 15;

Salvio, Strumia, Tetradis, Urbano 16;

Rajantie, Stopyra 17;

~
~
~u

~
Sead
-----
-

Higgs quartic coupling A

~.:\\\‘7ﬁ77 777777777
Andreassen, Frost, Schwartz18... = T -
—0.05- . | . . | . . | . . | . . | . |
10° 108 10'! 1014 10" 102
Scale u, GeV

Standard Model running of the Higgs quartic coupling
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Black holes and vacuum decay

BH features:

] . . . . //‘#
@ It’s a simple gravitational impurity — curved geometry o L\\,

S. Chandrasekhar:

“The black holes are the most perfect macroscopic objects
there are in the universe: the only elements in their
construction are our concepts of space and time... They
are the simplest objects as well.”

Planck spectrum, corrected
by greybody factors

@ It’s a simple source of (almost) thermal radiation — quantum vacuum

These two facts are equally important for vacuum decay.

The problem IS not hew: Hiscock 87; Berezin, Kuzmin, Tkachev 88, 91; Arnold 90

..but the interest has been revived recently: Gregory, Moss, Withers 14; Burda, Gregory, Moss 15, 16; Tetradis 16
Gorbunov, Levkov, Panin 17; Mukaida, Yamada 17; Kohri, Matsui 17 ...

Strumia 23

11



Black holes and vacuum decay

Claim: BHs can actually make vacuum decay unsuppressed.

Burda, Gregory, Moss: from “BHs as bubble nucleation cites” to “Fate of the Higgs vacuum”

They use Euclidean approach and look for the minimal-action configuration.

Their calculation can be improved, but what do we expect?

@® Intuition in favour: N
Mpe
Jw Mgy

—» BHs evaporate, thus probing a wide range of energy scales.

Smaller BHs have larger temperature: T&H =

—» (Small) primordial BHs could be produced abundantly in the Early Universe.
Carr, Kohri, Sendouda, Yokoyama, 2002.12778

The BH temperature is an observer-dependent quantity: TBH ('l) =

"L
- =

—» Close to the horizon, field fluctuations become extremely energetic. T

® Counter-arguments:

> NEAX &~ ‘h , but this is not enough for vacuum decay: one must form

a coherent field configuration: tunneling bounce or sphaleron.

—» Accelerating observers in flat space also see thermal radiation of arbitrary high T
(Unruh effect), but the decay rate is observer-independent.

12

<7
I'gH

oy > 9>Qg

Trajectories of uniformly accelerating
observers in flat spacetime.



Black holes and vacuum decay

® BH catalysis of vacuum decay is an interesting theoretical problem with
BH entropy
applications to phenomenology. Y

Semiclassical gravity, Nonperturbative quantum gravity (once back-reaction is
taken into account)...

lnformation pParadox

® For the semiclassical analysis, we need to know vacuum states w
associated with BHSs.

These are, in general, out of thermal equilibrium; also they live in a curved
background.

We can use the general method to associate the vacuum states with the
boundary conditions for the bounce solution.

13



Black hole vacuum

%
7

Unruh
Unruh in ]
Boulware “Notes on BH evaporation” 76 Hartle-Hawking

Boulware 75 Hartle, Hawking 76
BH from the collapse of matter

Eternal BH
BH mimicker

BH in thermal equilibrium

One can expect that PB < I_-7 < lT-IH

Arnold 90:

“...I do not know how to handle the question of false vacuum decay
in a nonequilibrium situation such as this one. I merely note that,
since radiation helps the system cross the barrier, the results
should lie somewhere between the two extremes of zero radiation
and thermal equilibrium.”

14



Black hole vacuum

@ Scalar field in 1+1 dimensions:

" oLLO ! A —
&'ﬁ@c.x) = g fm 2_\ (&I,w ‘P;w(e.x) + a}:wvr,w Uc,x)>

o T=L,R

® Define the following initial state:

S(Q”w') P I\ 8( |)
(&'f‘w é\' |> = u (ﬂ; 'w|> - w-w
L L ¢ e ";v. - i AR % Qa% _q

The three BH vacuum states can then be specified as follows:

Boulware: A = Ag= 0
Hartle-Hawking: 2, =Ne = A

Unruh: A.=0, Np =\

15

R Right-moving
modes

Left-moving
modes
X
near-horizon asymptotically flat
region space
XL.R =dr g



Black hole Green’s functions

wt

. thx) = f"(x)ei ,  w>0.

—\wt

® Inthe static BH background §@F6,x) = fkx) € |

And the general Green’s function takes the form

ao

ok ki) = [ de (quLu)f:’(x‘)+ Qoo 004 () + (1™ 1) (feli o0 - f (9F70)) A
+ Jg (B*F fr (K f ) +j35’*ﬁ()<){1:lf‘)) ARL)

Q e““"*"\ 0 i |t|
LR = e T T
A _ 1 _ 1 ’} e'\w{:
_RL rw =W
e M-4 e -1
} — reflection amplitude
X — transmission amplitude

16



Unruh Green’s function

2105.09331
(Massive scalar) Unruh Green’s function in two dimensions:
. N Lo - C—iwl—b-t’l o iw le—+l
q (-‘:;X) € X) = K :J '\Fk.w (x) :F;.w (x') [ 1 —wo + po 7 — right modes in thermal bath
° -e e -
+ ft'w(x){:w()d) Q_iwlb—t'l — left modes in vacuum
eiwl-b-t’)
+ ( Ilea‘ 1> [fa,w()‘) ‘P:,w("l) - {'L,w Oc)ilc:u (XI)] E"“"—f’- {
¢ % * b0 (-t — greybody factor
+ J—%- [Xw(gw Frua @ Fr0 )+ prw ﬁ,w O():F:,w Od)] —%:m
e -4
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Toy model: CGHS black hole

Callan, Giddings, Harvey, Strominger 92

- 42 & e & T
® BH metric in 1+1 dimensions: ols" = JL () ( dt” + a()( ) 4’ 0&9 \\oo
+
@
X is a “tortoise” coordinate s\&‘\’
1 ok
JL (X) = \\axx )\ = D\Tc rI7BH. (9@3‘,5 §\ é
1.|. e o/}éo% +&
2
NN X —» +o0 — asymptotically flat space
9.xx The part of the BH spacetime
JL X~ € X — —o0 — near-horizon region relevant for vacuum decay

@ Tunneling system:

§ = %fv“xfﬁf (- 41030 - VO)

}asﬁx( Ly aphp - L AL6 - AV (9)

We neglect back-reaction of the tunneling field on the BH.

@ To emulate the 4d centrifugal barrier, we also add the “dilaton barrier”:

2111.08017

a $ 4 %
A\y = - Q Sd XJ—”g e ‘P Effective potential for massive scalar modes

!

, , / , dilation field compounding the 2d BH
dimensionfull coupling 18



Toy model: Liouville potential

® Equation to solve: §, &,X) = -1 S dﬁlixlgx (4%, 4, x") 5 (x) V,.;, (e (' ¥))
This is hard. G

Way around: find a model in which the bounce has a narrow nonlinear
core (inner region) and a broad linear tail (outer region).

Pg (x,t=tonst)

| \
| |

| |
Then \/M',c (\(’6 (Jc',x')) o g(a) (éfx') . far enough from the core,

and one can solve the equation separately in the two regions. ok’ ‘\ X
0

, Ny !
outer region inner region

F\

@ For the nonlinear part take the Liouville potential:

Vig (0) = - d® (6?— i) , K>0

to ensure the existence of the overlap region

{)nd%»i

AV©)
Then we can find the bounce and the decay rate analytically,

for all three initial vacuum states, in the near-horizon region and

far from the BH. /\

The scalar field potential
19



Toy model: results

® For the Boulware and Hartle-Hawking vacua our method is equivalent to the known prescriptions of looking

for vacuum and finite-temperature bounces.

@® The catalysing effect is both due to geometry and due to excitations of the field modes by the BH. Both

effects are closely intertwined.

JBHH < [;2, < ﬂB /an < /\gj‘ar

“vacuum excitations” “curved geometry”
a3
0 \
Bg
/3 HH
=
Tey

Suppression of the Boulware, Hartle-Hawking and Unruh
vacuum decay as a function of BH temperature.

20



Stochastic regime for the Unruh vacuum

@® We could only find the Unruh bounce up to a certain temperature Tw.

This is not surprising: thermal bounces also cease to exist at T = Tc , yielding to the sphaleron.

So we expect that at T> TCU the decay proceeds via stochastic jumps.

® We couldn’t find the “Unruh sphaleron” analytically, but we were able to use a simple stochastic estimate:

(3
"ol )

where the variance of the field fluctuations is

S‘fax = giﬁ?o (q_x U’l 50, 0) - qF ('(:l X 0, 0))

This works in our particular model because
—» almost any relevant field fluctuation is Gaussian jg

0

ﬁ | Unruh bounce l Stochastic jumps
01

|

—» modes with relevant frequencies w ~m, are highly populated

In general, classical simulation is needed.

TCU § T;H

21



Reflections and outlook

® Contrary to the Hartle-Hawking vacuum, the decay of the Unruh vacuum remains exponentially
suppressed at all BH temperatures. This result probably holds in four dimensions.

® Gravitational backreaction must be included at some point.
® So far we focused on the semiclassical method. Real-time simulations might also be useful.

® The method is quite general and can be applied to time-dependent systems as well.

22



More on bounce at finite temperature

The bounce-sphaleron transition point was studied in QM and field theory
Chudnovsky 92

Garriga 94; Ferrera 95

In the thin-wall approximation, periodic bounces do not merge with the sphaleron — the transition is 1st order.
(The thin-wall sphaleron may not even exist)

This is not an artefact of the approximation.

B(T)

Branch of p.b. They have extra negative mode

N

Exponential suppression of vacuum decay in
the thin-wall potential in 3+1 dimension.

23



Decay of the Unruh vacuum

In the model with the dilaton barrier, the effective potential for massive scalar modes is given by

m? 26])\26_2)‘33
Uea(@) = 1o T “2Ar)2
1+e (1+e )
Defi = ¢
etine 9 In(m/+\/kK)

Then, the tunneling action behaves as follows:

Figure 10: Exponential suppression of the Unruh vacuum decay as a function of BH tem-
perature Ty = A/(27). Decay proceeds via tunneling in the near-horizon region at A < Ay,
whereas at A\ > Ay it is mediated by stochastic jumps in the vicinity and far away from BH.

24



Unruh bounce far from horizon

60 v
/\ ----- Sb/m
"""""""""""""" 4 (')':"""""""' ——————
20!
~0.04 ___-D02----~ ~ /S 002 0.04
——————— \‘ 71' m(:C - :Ul)
il
1
1n
L]
—40Y

Bounce solution describing tunneling from the Unruh vacuum far away from the BH.

Left: Profiles of the bounce (black solid) and its time derivative (red dashed) at=0for A= 0f7 Ays -
Right: Zoom-in on the central region of the left plot. We take n :%-.-— 0.
The grey dotted line marks the field value 'P“a)ié the maximum of the potential barrier.

3nm

Nyg =

((M\% + e —

£)

Here we consider the model without the dilaton barrier.
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