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N
Outline

e Introduction to phase transitions + the main idea.
o Dark matter via inverse phase transition.

o Topological defects: domain walls.

o Axions.

o Summary.
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Are there phase transitions in cosmology?

There is no electroweak phase transition, but rather a
crossover, in the Standard Model SU(3) x SU(2) x U(1).

NB. QCD SU(3) phase transition leaves weak traces, if it took place.
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Why should we bother about cosmo phase transitions?

o Extensions of Standard Model: baryon asymmetry,
neutrino oscillations, Dark Matter.
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Why should we bother about cosmo phase transitions?

o Extensions of Standard Model: baryon asymmetry,
neutrino oscillations, Dark Matter.

o Formation of topological defects
(domain walls, cosmic strings, magnetic monopoles).

Phase transitions in Grand Unified Theories at T ~ 10 — 10%® GeV
= overproducing monopoles = motivation for inflation.

o Gravitational wave background
from topological defects or bubble collisions.
LISA, Einstein Telescope, PTAs f ~ 108 — 100 Hz

o Particle emission during phase transitions can be a
source of Dark Matter (in this talk).
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Phase transitions: symmetry of the system changes.
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Common lore: the system evolves towards spontaneously
broken phase described by a constant non-zero
expectation value of a scalar as the Universe cools down.

Canonical example: electroweak phase transition in the
early Universe is due to (Higgs) = "57“2/’ — const.
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Common lore: the system evolves towards spontaneously
broken phase described by a constant non-zero
expectation value of a scalar as the Universe cools down.

Canonical example: electroweak phase transition in the
early Universe is due to (Higgs) = "57“2/’ — const.

In this talk: scale of spontaneous symmetry breaking is
time-dependent

1
v(t) o< T(t) (0 Weinberg'74, Vilenkin'81, Dodelson&Widrow'90

Other possible choices: v(t) o< H(t), |B(t)| (primordial magnetic fields)
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-
Model with Z;-symmetry
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Model with Z;-symmetry
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Model with Z;-symmetry
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Symmetry restoration vs Symmetry non-restoration

<>_\/Ng2T2 M2
=NV T T A

o M? > 0 symmetry is restored at Ty, ~ M/g

(x) =0 Inverse Phase Transition!
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Symmetry restoration vs Symmetry non-restoration

<>_\/Ng2T2 M2
=NV T T A

o M? > 0 symmetry is restored at Ty, ~ M/g

(x) =0 Inverse Phase Transition!

o M? < 0 = symmetry remains broken at late times.

(x) — const # 0
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Storyline 1:
Inverse phase transition and beyond freeze-in Dark Matter
Based on SR, Babichev, Gorbunov, Vikman'21

Verrl <ty <tlsym
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|
At early times x tracks the minimum y = (x)
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|
At early times x tracks the minimum y = (x)

[ Ng2T2 M2 d{x) 1
(x) = N N Tocwﬁooasbdﬁo

X stops tracking minimum and starts oscillating at low T

t<te <tsym Vers| te <t < toym Vegs| t>toym
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|
At early times x tracks the minimum y = (x)

X stops tracking minimum and starts oscillating at low T

Vers| <t <tsym Vers| te <t < toym Vers| t> tsym

Zr-symmetry + feeble couplings involved protect stability
— these oscillations naturally feed into Dark Matter
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Dark Matter abundance is fulfilled provided that

N 33/5 g \7/5 S -
M= 25 eV (W) 5_7 /A 2 1
Why being interested in so small masses and/or feeble
couplings?
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Freeze-out — freeze-in — inverse phase transition

(002 M2 A g2xeT¢

L= 2 4 2

o Freeze-out: relatively large 1078 <« |g?| <« 1
WIMPS: masses 1 MeV < M < 100 TeV

Initially in thermal equilibrium by sufficiently large couplings —>
good prospects for testing.

S. Ramazanov (CEICO) 19 October 2022 12/28



Freeze-out — freeze-in — inverse phase transition

(002 M2 A g2xeT¢

L= 2 4 2

o Freeze-out: relatively large 1078 <« |g?| <« 1
WIMPS: masses 1 MeV < M < 100 TeV

Initially in thermal equilibrium by sufficiently large couplings —>
good prospects for testing.

o Freeze-in: |g?| ~ 107! Chu at al'12, Lebedev and Toma'19

S. Ramazanov (CEICO) 19 October 2022 12/28



Freeze-out — freeze-in — inverse phase transition

(002 M2 A g2xeT¢

L= 2 4 2

o Freeze-out: relatively large 1078 <« |g?| <« 1
WIMPS: masses 1 MeV < M < 100 TeV

Initially in thermal equilibrium by sufficiently large couplings —>
good prospects for testing.

o Freeze-in: |g?| ~ 107! Chu at al'12, Lebedev and Toma'19

e For 0 < g2 <107 Dark Matter from inverse phase transition.
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Is there a life beyond freeze-in?
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Storyline 2: melting domain walls.
Babichev, Gorbunov, SR, Vikman'21

Domain walls are common in models with
spontaneous breaking of Z,-symmetry Zel'dovich et al'74

Verr t=1p

NB Setting to zero through £éRY?/2 for £ > 1
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Domain walls separate regions, where y = +(x)

e N\, ———._ domain walls

D

The picture is taken from http://www.ctc.cam.ac.uk/
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Domain wall problem

Kink :  x(z) = (x) - tanh (\/5 (x) - z>

. . ~ Myan 2v2X\(x)3
Domain wall tension: o = =

S 3
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Domain wall problem

Kink :  x(z) = (x) - tanh (\/5 (x) - z>

. . ~ Myan 2v2X\(x)3
Domain wall tension: o = =

S 3
In the scaling regime: one or a few domain walls in the
horizon volume.

Ryden, Press, Spergel'89
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Domain wall problem

Kink :  x(z) = (x) - tanh (\/5 (x) - z>

Moyai o 2\/5<X>3
s 3
In the scaling regime: one or a few domain walls in the
horizon volume.
Ryden, Press, Spergel'89

Domain wall tension: o,y =

3
Pwall ~ MyanH> ~ oyanH

Constant tension domain walls: pyay ~ owanH o< T2

Pwall O( 1
Prad T2(t)
B

o a?(t) = domain walls overclose the Universe!



No domain wall problem in our case

(X) < T = opa ~ VA()3 o T3

1

5
Pwall =~ OwaH o< T
? ? Prad a(t)
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No domain wall problem in our case

(X) < T = opa ~ VA()3 o T3

1
Prad a(t)

5
Pwall =~ OwaH o< T

Energy density of domain walls redshifts faster than
radiation

Domain walls completely vanish at inverse phase transition

Vilenkin'81

Do melting domain walls leave any trace?
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Domain walls emit gravitational waves

Einstein quadrupole formula+dimensional considerations

Power of gravitational radiation: P ~

Muai— Owai
Qjj ~

Quadrupole moment: "~

ngN(P-t)-H3~w:>pgwo<T6(t)oc

Most energetic gravitational waves are emitted right after
domain wall formation
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Weaker coupled means more visible

Numerical simulations: Hiramatsu, Kawasaki, Saikawa’'l3

9 wall

Few,peak == H(t) Pegw = —5
Mp,
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Weaker coupled means more visible

Numerical simulations: Hiramatsu, Kawasaki, Saikawa’'l3

9 wall

Few,peak == H(t) Pegw = 5
Mp,

N
fawpeak 60 Hz - \[ = (755 ) | | Qewipeak - 1 ~

B — |n2 2 (x)

Vanilla region:
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Gravitational waves vs sensitivity curves
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Preliminary spectrum of GWs

— g=10"°
— g=10""
100 IPTA —— g=10"18
SKA
/

10"

LISA

107 TianQin

V( Power Spectral Density / Hz')

102
ECIGO

102

10" 10° 10° 10 107? 10° 102 104 10°
Frequency / Hz

VSh ~ % (f < few,peak) V/Sh ~ % (fow,peak < f < feurorr)

Different spectrum compared to the case of constant tension domain walls.
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Storyline 3: Symmetry remains broken at low
temperatures. Axions. Based on SR and R. Samanta’22.
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Storyline 3: Symmetry remains broken at low
temperatures. Axions. Based on SR and R. Samanta'22.

@ Axions are introduced to resolve strong CP-problem of QCD.
Peccei&Quinn'77

@ They are pseudo-Nambu-Goldstone bosons of spontaneously broken
anomalous U(1) Peccei-Quinn symmetry.

ia
S=|S|-e®a

@ Axions are often considered as promising dark matter candidates.

a N CcD
V(a) ~ A% -[1—cos<>}:>ma: Q
( ) QCD fPQ 2fPQ

Preskill et al’83, Abbott&Sikivie'83, Dine&Fischler'83
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L=10,SP = xs-|S[* +&%S%To .

At high temperatures:  fpg = \f2<5> =4z

N T
243 g
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L=10,SP = xs-|S[* +&%S%To .

N T
At high temperatures:  fpg = \f2<5> = m ' g

)= F=rlo= s TS

At low temperatures:
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=19u51> = As - |S[* + g%|S[*"o

N T
At high temperatures:  fpg = \f2<5> = m ' g

Ve 0

Ve

At low temperatures:  (¢) =

Peccei-Quinn scale is gliding in the early Universe

from sub-Planck values to relatively small values,
as the Universe cools down

Another characteristic feature: M2 = gv;, < 1 GeV
Typically, Peccei-Quinn field is much heavier, Ms ~ fpg
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This may have a dramatic effect on axion dark matter
production mechanisms

Conventional axion dark matter production mechanisms:
@ Misalignment mechanism.
@ Decay of global topological defects Davis'86, Kawasaki et al'14

Both are efficient for f,QQ ~ 101 — 1012 GeV.

On the other hand, f,QQ ~ 108 — 10° GeV can be interesting for
supernovae and horizontal branches stars.

Temperature-dependence fpg(t) o< T(t)

enables a new production mechanism for axions,
efficient independently of low-energy scale f,QQ.
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Resonant axion production in the early Universe, when the radial field
relaxes to the minimum of its potential, cf. Co, Hall, and Harigaya'l7

Similar to (narrow) parametric resonance after inflation.
Compared to inflation, resonance band is stable: redshift of produced
axions is compensated by time-decrease of the Peccei-Quinn scale fpg(t).

|6plfeal  |6alfpal

—  — k=Msl2

107
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Parameter space strongly depends on the ratio r = 5aipgp of produced

radial fluctuations p = v/2|S| along with axions. For r > 0.01, the scenario
is on the way to being ruled out.
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Parameter space strongly depends on the ratio r = Zi%p of produced

radial fluctuations p = v/2|S| along with axions. For r > 0.01, the scenario
is on the way to being ruled out.

m, [eV]
5.107! 5.1072 5.1073 5.107*

EXCL. (Axions too warm + Stability condition violated)

107 108 10° 10"

frq [GeV]
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Summary

Spontaneous symmetry breaking in the early Universe by a
time-varying expectation value of a scalar field allows:

e to generate the right abundance of
Dark Matter in a feebly coupled regime.

o to get rid of domain wall problem, and at the same
time enjoy potentially observable gravitational waves
from domain walls. With these gravitational waves,
one can probe the underlying field-theoretical model in

a very weakly coupled regime inaccessible by other
experiments.

o to generate axion dark matter in astrophysically
interesting range of Peccei-Quinn scale values.
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Thanks for your attention!!!

S. Ramazanov (CEICO) 19 October 2022 28/28



