(Euclidean) Wormholes and Wilson Loops

Panos Betzios

University of British Columbia

Work in collaboration with O. Papadoulaki arXiv:2311.09289 arXiv:1903.05658,2110.14655 (+ Elias Kiritsis) and in progress (+ Ji-Hoon Lee)

ITMP Lomonosov Moscow State University
31 January 2024

Why to study (Euclidean) Wormholes

Wormholes are interesting (exotic) solutions of GR + matter

- Proposed physical effects due to wormholes
- They lead to a non-trivial topology of space(time)
- Implications on the information paradox? - Connect the black hole interior with exterior?
- Affecting the low energy coupling constants? (α-parameters)
[Lavrelashvili, Rubakov, Tinyakov, Coleman, Hawking ...]
- Resolving the Cosmological Constant problem?
- Related to Cosmologies (Bang-Crunch universes) upon analytic continuation

Why to study (Euclidean) Wormholes

Wormholes are interesting (exotic) solutions of GR + matter

- Proposed physical effects due to wormholes
- They lead to a non-trivial topology of space(time)
- Implications on the information paradox? - Connect the black hole interior with exterior?
- Affecting the low energy coupling constants? (α-parameters)
[Lavrelashvili, Rubakov, Tinyakov, Coleman, Hawking ...]
- Resolving the Cosmological Constant problem?
- Related to Cosmologies (Bang-Crunch universes) upon analytic continuation
- Different types of wormholes
- Lorentzian vs Euclidean
- Macroscopic multi-boundary geometries (saddles) vs.

Microscopic "gas of wormholes" (α-parameters)

- Different characteristic scales

$$
L_{P} \ll L_{W} \sim L_{\text {macro }} \text { vs. } L_{P} \leq L_{W} \ll L_{\text {macro }} \text { ex: } L_{\text {macro }}=L_{A d S}
$$

- Our main focus will be macroscopic (Euclidean) wormholes in the context of holography (AdS/CFT)

Lorentzian wormholes or "ER = EPR"

- Einstein - Rosen Bridge: Connects the two sides of the eternal black hole

- Wormhole = Einstein Podolski Rosen pair of two black holes in a particular entangled state of two non-interacting QFT's:

$$
|\Psi\rangle=\sum_{n} e^{-\beta E_{n} / 2}\left|E_{n}\right\rangle_{L}^{C P T} \times\left|E_{n}\right\rangle_{R}
$$

- Large amounts of entanglement can give rise
to a geometric connection!

Euclidean Wormholes (saddles)

- There is no Lorentzian time, only Euclidean space (analogous to gravitational instantons)
- To have such solutions, one needs locally negative Euclidean Energy to support the throat from collapsing
- Such energy can be provided by axionic fields or "magnetic" fluxes
- Several solutions in different dimensions/setups (some can be embedded in the standard model + gravity)
- a subset of those is perturbatively stable [Marolf-Santos ...]

Euclidean Wormholes (saddles)

- There is no Lorentzian time, only Euclidean space (analogous to gravitational instantons)
- To have such solutions, one needs locally negative Euclidean Energy to support the throat from collapsing
- Such energy can be provided by axionic fields or "magnetic" fluxes
- Several solutions in different dimensions/setups (some can be embedded in the standard model + gravity)
- a subset of those is perturbatively stable [Marolf-Santos ...]

Pertinent Questions

- Microscopic UV complete models of EWs? In AdS/CFT? (we want to understand string theory on target space wormhole backgrounds)
- Worldsheet description of target space wormholes? (some putative WZW coset models in [PB - Gaddam - Papadoulaki (2023) + in progress])

Euclidean Wormholes (saddles)

- There is no Lorentzian time, only Euclidean space (analogous to gravitational instantons)
- To have such solutions, one needs locally negative Euclidean Energy to support the throat from collapsing
- Such energy can be provided by axionic fields or "magnetic" fluxes
- Several solutions in different dimensions/setups (some can be embedded in the standard model + gravity)
- a subset of those is perturbatively stable [Marolf-Santos ...]

Pertinent Questions

- Microscopic UV complete models of EWs? In AdS/CFT? (we want to understand string theory on target space wormhole backgrounds)
- Worldsheet description of target space wormholes? (some putative WZW coset models in [PB - Gaddam - Papadoulaki (2023) + in progress])
There is a further reason why Euclidean wormholes are interesting

Euclidean Wormholes and Bang-Crunch Cosmologies

AdS/CFT context: [Maldacena-Maoz (04), PB-Gaddam-Papadoulaki (17) + Kiritsis (19-21), Van Raamsdonk et. al. (20-23) ...]

- Euclidean geometries (Z_{2} symmetry) have interesting connections to Lorentzian geometries via analytic continuation: Slicing them we define states/wavefunctions
- Ex: Sphere \leftrightarrow Hartle-Hawking wavefunction (no boundary state) for Cosmology, Euclidean cigar \leftrightarrow (TFD state) for the eternal black hole
- A common misconception: Euclidean Wormholes are NOT related to Black Holes (horizons) via analytic continuation - Instead:

- The most interesting analytic continuation (radial) is related to Bang - Crunch Cosmologies (these can exist even for negative $\Lambda . .$.)
- Along the boundary: leads to traversable wormhole geometries (but various known saddles develop pathologies - complex background fields)

Symmetries and correlators of local operators

[PB - Kiritsis - Papadoulaki (19), PB - Papadoulaki (23)]

- No obvious entanglement as for Lorentzian wormholes (BH horizons)
- Global symmetries for the boundary theories? $\leftrightarrow A$ common Bulk "Gauss Law constraint" and gauge field
- Symmetries are broken to their diagonal part: $\mathcal{G}_{1} \times \mathcal{G}_{2} \rightarrow \mathcal{G}_{\text {diag }}$. (spontaneous vs. explicit - whether there is a competing factorised saddle or not with the same bcs for bulk fields)

- We find two types of correlation functions, either on a single boundary such as $\left\langle\mathcal{O}_{1} \mathcal{O}_{1}\right\rangle$ or $\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle$, or cross-correlators across the two boundaries such as $\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle$
- No short distance singularities in the cross-correlators

Symmetries and correlators of local operators

[PB - Kiritsis - Papadoulaki (19), PB - Papadoulaki (23)]

- No obvious entanglement as for Lorentzian wormholes (BH horizons)
- Global symmetries for the boundary theories? $\leftrightarrow A$ common Bulk "Gauss Law constraint" and gauge field
- Symmetries are broken to their diagonal part: $\mathcal{G}_{1} \times \mathcal{G}_{2} \rightarrow \mathcal{G}_{\text {diag }}$. (spontaneous vs. explicit - whether there is a competing factorised saddle or not with the same bcs for bulk fields)

- We find two types of correlation functions, either on a single boundary such as $\left\langle\mathcal{O}_{1} \mathcal{O}_{1}\right\rangle$ or $\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle$, or cross-correlators across the two boundaries such as $\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle$
- No short distance singularities in the cross-correlators
- One might have expected: different decoupled EQFTs on $\partial \mathcal{M}=\cup_{i} \partial \mathcal{M}_{i}$ \Rightarrow Cross correlators are zero or $Z\left(J_{1}, J_{2}\right)=Z_{1}\left(J_{1}\right) Z_{2}\left(J_{2}\right)$
- Wormhole Bulk dictates otherwise \Rightarrow What gives rise to the peculiar properties of the cross-correlators?

The factorisation problem: $Z\left(J_{1}, J_{2}\right) \neq Z_{1}\left(J_{1}\right) Z_{2}\left(J_{2}\right)$
[Maldacena - Maoz (2004) ...]

Possible resolutions in the literature :

- The QGR path integral corresponds to an average: $\left\langle Z\left(J_{1}\right) Z\left(J_{2}\right)\right\rangle \Rightarrow$ Several options [...]
- Explicit averaging over ensembles of CFT's - (Unitarity crisis)
- In canonical $A d S / C F T$ there is a single theory with fixed parameters
- Approximate statistical averaging ("ETH" - "Quantum Chaos") \Rightarrow "Statistical wormholes" from complicated/almost random Hamiltonians [...]
- Consistency with $\mathcal{N}=4$ planar integrability? \Rightarrow Observables/states above the BH threshold [schlenker - Witten ...]

The "statistical wormholes" need not be saddles of (SU)GRA eoms

No factorisation problem due to interactions?
[PB - Kiritsis - Papadoulaki (19 - 21)], see also related work by [Van Raamsdonk et. al. (20-22)] and [Bachas - Lavdas (18)]

A straightforward? resolution for wormhole saddles:

- Interactions between holographic QFT's
- It is actually quite subtle!: "Why to have a disconnected pair of boundaries and not a single one?" \Rightarrow UV soft - IR strong interactions (reminiscent of confinement...)
- Or: can the exact Schwinger functional acquire an "averaged" form

$$
Z_{\text {system }}\left(J_{1}, J_{2}\right)=\sum_{S} e^{w(S)} Z_{S}^{(Q F T 1)}\left(J_{1}\right) Z_{S}^{(Q F T 2)}\left(J_{2}\right)
$$

in a single unitary/reflection positive system? (S some "sector") [PB - Kiritsis - Papadoulaki (21)]

- Cross correlators \Rightarrow averages of lower point correlators in individual subsystems - no short distance singularities

Non-local observables: Wilson Loops
[PB - Kiritsis - Papadoulaki (2019), Refined in: PB - Papadoulaki (2023)]

- Wilson loop observables $W(C)=\operatorname{tr}\left(\mathcal{P} \exp i \oint_{C} A_{\mu} d x^{\mu}\right)$ refine the analysis of [Schlenker - Witten (2022)] that studied the compressibility properties of various boundary cycles C in the wormhole bulk
- In holography: Find the string worldsheet ending on the corresponding loop C on a boundary (if it exists) and minimize its area
- Simplest observable: expectation value of a single Wilson loop $\langle W(C)\rangle$

Universal features:

- Large loops on the boundary penetrate further in the bulk and we can probe the IR properties of the boundary dual
- Typically we find an Area law behaviour in the IR

Non-local observables: Wilson Loops
[PB - Kiritsis - Papadoulaki (2019), Refined in: PB - Papadoulaki (2023)]

- Wilson loop observables $W(C)=\operatorname{tr}\left(\mathcal{P} \exp i \oint_{C} A_{\mu} d x^{\mu}\right)$ refine the analysis of [Schlenker - Witten (2022)] that studied the compressibility properties of various boundary cycles C in the wormhole bulk
- In holography: Find the string worldsheet ending on the corresponding loop C on a boundary (if it exists) and minimize its area
- Simplest observable: expectation value of a single Wilson loop $\langle W(C)\rangle$

Universal features:

- Large loops on the boundary penetrate further in the bulk and we can probe the IR properties of the boundary dual
- Typically we find an Area law behaviour in the IR
- If the EW geometry contains a non-contractible (thermal) cycle $C_{\beta}: S_{\beta}^{1}$, then there is no bulk surface ending on it, so that $\left\langle W_{P}\left(C_{\beta}\right)\right\rangle=0$
- Again reminiscent of some kind of confining behaviour (center symmetry) In contrast with the BH cigar for which $\left\langle W_{P}\left(C_{\beta}\right)\right\rangle \neq 0$ (deconfinement)

Wilson Loop correlators (universal results)

- Study loop cross-correlators $\left\langle W\left(C_{1}\right) W\left(C_{2}\right)\right\rangle$, the two loops residing on different boundaries
- As we shrink the boundary loops, we find that the leading configuration of lowest action is the one for two disconnected loops
- In the regime of large Wilson loops, the leading contribution originates from a single surface connecting the two loops having a cylinder topology $S^{1} \times R$
- Large loops \Rightarrow Strong IR cross-coupling

- Study loop cross-correlators $\left\langle W\left(C_{1}\right) W\left(C_{2}\right)\right\rangle$, the two loops residing on different boundaries
- As we shrink the boundary loops, we find that the leading configuration of lowest action is the one for two disconnected loops
- In the regime of large Wilson loops, the leading contribution originates from a single surface connecting the two loops having a cylinder topology $S^{1} \times R$
- Large loops \Rightarrow Strong IR cross-coupling
- In the presence of a a non-contractible (thermal) cycle $C_{\beta}: S_{\beta}^{1}$, we find only a connected cylindrical bulk surface $\left(\left\langle W_{P}\left(C_{\beta}^{(1)}\right) W_{P}\left(C_{\beta}^{(2)}\right)\right\rangle \neq 0\right)$
- Consistent with unbroken diagonal center symmetry ex: $Z_{N}^{(1)} \times Z_{N}^{(2)} \rightarrow Z_{N}^{\text {diag. "cross-confining behaviour" - diagonal singlets }}$

Dual QFT models

Tripartite BQFT construction

[van Raamsdonk (20) - (22)], [PB - Kiritsis - Papadoulaki (21)]

- Two d-dim (holographic) BQFT's on Σ coupled through a $d+1$-dim intermediate ("messenger") theory on $I \times \Sigma$

- Consider a system for which $c_{d+1} \ll c_{d}$
- We would like the system to flow to a gapped/confining theory in the IR
- The geometric idea: The dual bulk gravity can localise on $d+1$-dim EOW branes that bend and connect in the IR [van Raamsdonk]
- We focus in the case where the messenger theory is (quasi) topological $\left(T Q F T_{d+1}\right) \Rightarrow$ No contamination from $d+2$ bulk perturbative modes, natural gap in the IR ... [PB - Kiritsis - Papadoulaki]
- Integrate out $T Q F T_{d+1} \Rightarrow$ The Schwinger functional does become

$$
Z_{\text {system }}=\sum_{S} e^{w(S)} Z_{S}^{\left(B Q F T_{1}\right)}\left(J_{1}\right) Z_{S}^{\left(B Q F T_{2}\right)}\left(J_{2}\right)
$$

Solvable microscopic tripartite model $(2 d-1 d)$
[PB - Kiritsis - Papadoulaki (21), PB - Papadoulaki (23)]

- Consider a generalised YM in $2 d(\tau, z)$ with BF action

$$
S_{g Y M}=\frac{1}{g_{Y M}^{2}} \int_{\Sigma} \operatorname{tr} B F+\frac{\theta}{g_{Y M}^{2}} \int_{\Sigma} \operatorname{tr} B d \mu-\frac{1}{2 g_{Y M}^{2}} \int_{\Sigma} \operatorname{tr} \Phi(B) d \mu
$$

where $F=d A+A \wedge A$

- Couple it with two $1 d U(N)$ gauged matrix quantum mechanics theories $M_{1,2}(\tau)$ at the endpoints of an interval $I(z= \pm L)$
$S_{M Q M_{1,2}}=\int d \tau \operatorname{tr}\left(\frac{1}{2}\left(D_{\tau} M_{1,2}\right)^{2}-V\left(M_{1,2}\right)\right), D_{\tau} M_{1,2}=\partial_{\tau} M_{1,2}+i\left[A_{\tau}^{1,2}, M_{1,2}\right]$
$A_{\tau}(\tau, z= \pm L)=A_{\tau}^{1,2}(\tau)$ is the value of the 2d gauge field on the two boundaries
- Solvable system: $2 d$ YM - $\left(\Phi(B)=B^{2}\right)$ coupled to two Gaussian MQM $\left(V\left(M_{1,2}\right)=\frac{1}{2} M_{1,2}^{2}\right)$

"Entangling" the representations (compact τ)

- Place the system on $I \times S^{1}$ (cylinder) of length L and circumference β
- The $2 d \mathrm{YM}$ amplitude on the cylinder is

$$
Z_{Y M}\left(U_{1}, U_{2}\right)=\sum_{R} \chi_{R}\left(U_{1}\right) \chi_{R}\left(U_{2}^{\dagger}\right) e^{-L \frac{g_{Y M}^{2}}{N} C_{R}^{(2)}+i \theta C_{R}^{(1)}}
$$

and depends on the two asymptotic holonomies $U_{1,2}=\exp \oint d \tau A_{\tau}^{1,2}$ (zero modes of the gauge field)

- R a $U(N)$ representation, $C_{R}^{(1,2)}$ its Casimirs and $\chi_{R}(U)$ are $U(N)$ characters/wavefunctions at the ends of the cylinder
- Integrate out $M_{1,2}$ to obtain the (twisted) MQM partition functions $Z_{1,2}^{M Q M}\left(U_{1,2} ; \beta\right)=\int D M_{1,2}\left\langle U_{1,2} M_{1,2} U_{1,2}^{\dagger} \mid M_{1,2}\right\rangle_{H . O s c}$.
- Couple the $2 d \mathrm{YM}$ amplitude $Z_{Y M}\left(U_{1}, U_{2}\right)$ to the two MQM partition functions $Z_{1,2}^{M Q M}\left(U_{1,2} ; \beta\right)$ and integrate over the zero modes $U_{1,2}$

"Entangling" the representations (compact τ)

- The complete partition function on $I \times S^{1}$ is

$$
\begin{aligned}
Z_{\text {system }} & =\sum_{R} e^{-L \frac{g_{Y M}^{2}}{N} C_{R}^{(2)}+i \theta C_{R}^{(1)}} Z_{R}^{M Q M_{1}}(\beta) Z_{R}^{M Q M_{2}}(\beta), \\
Z_{R}^{M Q M}(\beta) & =\operatorname{tr}_{\mathcal{H}_{R}} e^{-\beta \hat{H}_{R}^{M Q M}}=\int D U \chi_{R}(U) Z^{M Q M}(U ; \beta)
\end{aligned}
$$

with β the S^{1} size and \mathcal{H}_{R} the Hilbert space of MQM in a fixed representation R [Kazakov, Klebanov ...]

- The two MQM representations R are correlated/"entangled"
$\sum_{R} \Rightarrow$ is a form of "averaging", consistent with unitarity (reflection positivity) for a single (tripartite) quantum mechanical system \Rightarrow What we previously called "the sectors S"

"Entangling" the representations (compact τ)

- The complete partition function on $I \times S^{1}$ is

$$
\begin{aligned}
Z_{\text {system }} & =\sum_{R} e^{-L \frac{g_{Y M}^{2}}{N} C_{R}^{(2)}+i \theta C_{R}^{(1)}} Z_{R}^{M Q M_{1}}(\beta) Z_{R}^{M Q M_{2}}(\beta), \\
Z_{R}^{M Q M}(\beta) & =\operatorname{tr}_{\mathcal{H}_{R}} e^{-\beta \hat{H}_{R}^{M Q M}}=\int D U \chi_{R}(U) Z^{M Q M}(U ; \beta)
\end{aligned}
$$

with β the S^{1} size and \mathcal{H}_{R} the Hilbert space of MQM in a fixed representation R [Kazakov, Klebanov ...]

- The two MQM representations R are correlated/"entangled" $\sum_{R} \Rightarrow$ is a form of "averaging", consistent with unitarity (reflection positivity) for a single (tripartite) quantum mechanical system \Rightarrow What we previously called "the sectors S"
- No approximation (such as ETH or coarse graining) or averaging over theories involved!
- The allowed representations in the sum are center symmetric (zero n -ality), so indeed $g_{c}^{(1)} \times g_{c}^{(2)} \rightarrow g_{c}^{(\text {diag.) }}$ [PB - Papadoulaki (23)]

Higher Dimensional Examples

Sketch of the prescription

- Consider a space with the topology $\mathcal{M}=\Sigma \times I$
- Couple two holographic BQFT's on the interval ends $\Sigma_{1,2}$ using the interval transition amplitude of a (quasi) - topological TQFT in $\Sigma \times I$

2D/3D dimensional example

- Two $2 D$ BQFT's coupled through a Chern-Simons theory living in $3 D$
- Convenient to use radial quantisation $\left(A_{r}=0\right)$ to define the interval transition amplitude [Elitzur-Moore-Schwimmer-Seiberg])
- Couple the CS. transition amplitude to the two $2 D$ (gauged) BQFT's and integrate over the gauge field zero modes
- Ex: $\Sigma=T^{2}$: Replace the wavefunctions $\chi_{R}(U)$ of the $2 D$ YM model with Weyl-Kac characters $\chi_{R, k}(\alpha, \tau)$
- Important to construct a higher dimensional (SUSic) model with control on both sides of the duality ...

$\mathcal{N}=4$ Wilson loops and type IIB "bubbling" wormholes

Wilson loops in $\mathcal{N}=4$ SYM

- The $2 d / 1 d$ model is reminiscent of SUSY localization computations of line/defect operators in $\mathcal{N}=4$ SYM [...]
- Idea: correlate representations of ($1 / 2$-BPS) Wilson loops W_{R} in higher dimensional examples that have known semiclassical holographic duals. Here: Consider two (non-interacting) copies of $\mathcal{N}=4$ SYM and a correlated observable

$$
\sum_{R} e^{w(R)}\left\langle W_{R}\right\rangle_{1}\left\langle W_{R}\right\rangle_{2} \quad W_{R}=\operatorname{tr}_{R} P \exp \left[i \oint d s\left(i A_{\mu} \dot{x}^{\mu}+\vec{n} \cdot \vec{\Phi}|\dot{x}|\right)\right]
$$

- A single $1 / 2$-BPS Wilson loop in the representation R is computed via localization resulting in a Hermitean matrix integral [Pestun ...]

$$
\left\langle W_{R}\right\rangle=\left\langle\operatorname{tr}_{R}\left(e^{M}\right)\right\rangle_{M}=\frac{1}{Z} \int D M e^{-\frac{2 N}{\lambda} \operatorname{tr} M^{2}} \chi_{R}\left(e^{M}\right)
$$

- We would like to understand the limit where the operator is "very heavy" and backreacts strongly in the dual geometry

Wilson loops in large $\left(O\left(N^{2}\right)\right)$ representations

[Gomis, Okuda, Trancanelli ...]

- Representations with $O(N)$ boxes are still light (D-branes etc.)
- We need to consider representations $R:\left\{R_{1}, . . R_{N}\right\}$ with $O\left(N^{2}\right)$ boxes and the highest weights $R_{i} \sim O(N)$

- The Young diagram of such reps is described by a collection of rectangular blocks (each with $O\left(N^{2}\right)$ boxes), of size $\left(n_{I}, k_{I}\right)$ specifying the number of rows/columns
- Once projected onto the real line, a "Maya diagram" is produced consisting of black and white lines
- The lines correspond to the cuts of the matrix model resolvent $\omega_{R}(z)$, which in turn dictates the form and properties of the dual SUGRA geometry

The type $I I B$ backreacted geometries

- The geometry dual to a backreacted loop in rep R, has an $S O(2,1) \times S O(3) \times S O(5)$ isometry [D 'Hoker-Estes- Gutperle, ...]

$$
d s^{2}=f_{1}^{2} d s_{A d S_{2}}^{2}+f_{2}^{2} d s_{S^{2}}^{2}+f_{4}^{2} d s_{S^{4}}^{2}+4 \rho^{2} d z d \bar{z}
$$

where z, \bar{z} parametrise a Riemann surface Σ and $f_{1,2,4}(z, \bar{z}), \rho(z, \bar{z})$. The Wilson loop is on the S^{1} boundary of the $A d S_{2}$ disk

- The solution also contains a non-trivial dilaton and 3 -cycles $/ 5$-cycles $/ 7$-cycles with RR/RR/NSNS fluxes supporting them ($D 5 / D 3 / F 1$)
- Everything is determined by two harmonic functions $h_{1,2}(z, \bar{z}) . h_{2}=0$ determines the boundary of Σ and h_{1} contains the data of the "bubbling" geometry (cuts \leftrightarrow fluxes + singularity \leftrightarrow asymptotic $\operatorname{AdS} S_{5} \times S^{5}$ region)

Connecting the MM resolvent with the harmonic functions

- One can show that the matrix model resolvent is related to the two harmonic functions $h_{1,2}$ via ($y(z)$: "spectral - curve")

$$
\begin{array}{r}
2 \omega(z)=V_{c}^{\prime}(z)-y(z), \quad \rho(z)=\frac{1}{2 \pi} \Im y(z), \quad z \in \mathcal{C} \\
h_{1}(z, \bar{z})=\mathcal{A}+\overline{\mathcal{A}}, \quad h_{2}(z, \bar{z})=\mathcal{B}+\overline{\mathcal{B}} \\
i V_{c}^{\prime}(z)=\frac{2 i}{\lambda} z=\mathcal{B}(z), \quad i y(z)=\mathcal{A}(z)
\end{array}
$$

- This means that it completely determines the properties of the dual SUGRA geometry
- $h_{1,2}$ need to have common singularities on $\partial \Sigma$. Near such singularities the metric asymptotes to $A d S_{5} \times S^{5}$. ex:

$$
h_{1}=\frac{2 i}{\lambda} \sqrt{z^{2}-\lambda}+\text { c.c. }, \quad h_{2}=\frac{2 i}{\lambda} z+\text { c.c. }
$$

- For a single Wilson loop in any rep, there is only a single such singularity. The topology of the boundary is an S^{4} and the half-BPS Wilson loop wraps a great $S^{1} \subset S^{4}$

Wormholes \equiv multiple singularities on $\partial \Sigma$

- We found solutions with more than one singularities/asymptotic regions, still preserving the regularity conditions of [D'Hoker-Estes- Gutperle, ...]
- The simplest such Σ corresponds to a disk with two cuts/singularities \equiv a square with two singularities [PB, Ji Hoon Lee, O. Papadoulaki]

2K

$$
h_{1}(z)=i \frac{2}{\lambda z} \sqrt{\left(z^{2}-e_{\min }^{2}\right)\left(z^{2}-e_{\max }^{2}\right)}+c c ., \quad h_{2}(z)=i \frac{2}{\lambda}\left(z-\frac{e_{\min } e_{\max }}{z}\right)+c c .
$$

- We also found more complicated solutions that can be mapped to regular polygons with $2 n$ edges and n singularities, as well as solutions when Σ is an annulus

Geometric properties I: $A d S_{2}$ factor and "Janus"

- The two boundary wormhole geometry is a form of a double cover of $\operatorname{AdS} S_{5} \times S^{5}$ (dilaton is still constant)
- There is a caveat: The geometry has an $E A d S_{2}$ factor with disk topology and its boundary S^{1} is shared by all the $A d S_{5}$ asymptotic boundaries (Σ singularities) that have the topology of S^{4}
- This means that the would-be distinct S^{4} boundaries are identified on a common S^{1}, in analogy with other Janus-type of solutions [D'Hoker, Estes, Gutperle, Bachas, Gomis, Assel ...]

- Still it is possible to connect separate points on the two S^{4} s by traversing the bulk wormhole, without ever crossing the common S^{1}

An aside: Two boundary $A d S_{2}$ wormhole?

[PB - Papadoulaki (23)]

- What about using global $E A d S_{2}$ that has two boundaries (cylinder)?

- In this case away from the Σ singularities the geometry is the two boundary $E A d S_{2} \times S^{4} \times S^{2} \times R_{2}$
(similar to the [Maldacena Milekhin Popov] wormhole geometries)
- At the Σ singularities, the former UV asymptotic S^{4} 's are now replaced by $S^{3} \times S^{1}$
- The two asymptotic S^{1} 's of the cylinder $E A d S_{2}$ comprise the S^{1} 's on the north and south poles of the S^{3}.
- Consistent with the fact that one needs to have a pair of Polyakov loops (around the S^{1}), sitting on the north and south poles of S^{3} (Gauss-law)

Matrix model dual of Σ wormhole with two S^{4} boundaries

- The dual matrix model spectral curve needs two cuts and two singularities
- Use an "analogue of the Dirac- δ " for two $1 / 2$-BPS loop operators on two copies of $\mathcal{N}=4 \Rightarrow$ We "glue" the two copies of $\mathcal{N}=4$ Wilson loops

$$
\left\langle\operatorname{det}\left(I \otimes I-e^{M_{1}} \otimes e^{M_{2}}\right)^{-1}\right\rangle_{1,2}=\sum_{R}\left\langle\chi_{R}\left(e^{M_{1}}\right)\right\rangle_{1}\left\langle\chi_{R}\left(e^{M_{2}}\right)\right\rangle_{2}
$$

If the matrices were unitary this would have been a Weyl-invariant delta function

- This can be analysed as a coupled two matrix model or as a model in the space of highest weights R_{i} of R
- For the multi-boundary wormholes use an \hat{A}_{r} necklace matrix chain and connect the nodes with determinant operators

Intuitive understanding of the 2MM: Two component gas

- The 2 MM saddle point equations describe two types of particles

$$
\begin{array}{r}
-\frac{4 N_{1}}{\lambda_{1}} \mu_{i}^{(1)}-\sum_{k=1}^{N_{2}} \frac{2}{\sinh \left(\mu_{i}^{(1)}+\mu_{k}^{(2)}\right)}+\sum_{j \neq i} \frac{2}{\mu_{i}^{(1)}-\mu_{j}^{(1)}}=0 \\
-\frac{4 N_{2}}{\lambda_{2}} \mu_{k}^{(2)}-\sum_{i=1}^{N_{1}} \frac{2}{\sinh \left(\mu_{i}^{(1)}+\mu_{k}^{(2)}\right)}+\sum_{j \neq k} \frac{2}{\mu_{k}^{(2)}-\mu_{j}^{(2)}}=0
\end{array}
$$

with an $1-1$ and $2-2$ repulsion and $1-2$ attraction to "mirror" points

- There is an overall Gaussian attractive potential \Rightarrow This leads to a paired $1-2$ condensate at the origin (the additional pole of the planar resolvent)

- After lots of pairs condense, they create a repulsive effective potential for the rest of the eigenvalues
- The rest of the eigenvalues distribute on two opposite sides of the origin. At large- N they form two cuts, giving rise to the wormhole resolvent
- At strong 't Hooft coupling the saddle point equations simplify in terms of only rational functions (similar to two coupled $O(2)$ models on a random lattice) [Kostov, Eynard ...]
- In this limit we can obtain an exact solution for the resolvent

$$
\begin{aligned}
\omega(z) & =\frac{2}{\lambda}\left(z-\frac{a b}{z}\right)-\frac{2}{\lambda z} \sqrt{\left(z^{2}-b^{2}\right)\left(z^{2}-a^{2}\right)} \\
a & =\frac{1}{2}(\sqrt{3}-1) \sqrt{\lambda}, \quad b=\frac{1}{2}(\sqrt{3}+1) \sqrt{\lambda}
\end{aligned}
$$

- The normalisability of the density of eigenvalues $\left(\int_{\text {supp. }} \rho(\mu)=1\right)$ fixes the end-points a, b in terms of the 't Hooft coupling λ
- The resulting harmonic functions $h_{1,2}$ correspond precisely to the ones we found in the gravitational description
- One can compare the free energy of the wormhole saddle with two disconnected $A d S_{5} \times S^{5}$ spaces

$$
\mathcal{F}_{w}-2 \mathcal{F}_{A d S}=-\frac{1}{2} \log \lambda
$$

- The wormhole has lower free energy. (Indicative for its stability)
- One can also compute the expectation of probe Wilson loops. For example $W_{f}=\operatorname{tr} e^{M}$

$$
\begin{aligned}
\left\langle W_{f}\right\rangle_{A d S} & =\int_{-\infty}^{\infty} d z \rho_{A d S}(z) e^{z}=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda}) \\
\left\langle W_{f}\right\rangle_{w o r m} & =\frac{4}{\pi \lambda} \int_{a}^{b} \frac{d z}{z} \sqrt{\left(b^{2}-z^{2}\right)\left(z^{2}-a^{2}\right)} e^{z}
\end{aligned}
$$

It grows with a slower rate with λ wtr to the AdS example

- Interesting to extend this to observables with coordinate dependence, such as correlators of local operators and match with the gravity side

Further comments and generalisations

- Take two copies of $\mathcal{N}=4$ with $\mathcal{G}_{1} \times \mathcal{G}_{2}$ symmetry and consider the general class of correlated observables

$$
\sum_{R} e^{w(R)}\left\langle\chi_{R}\left(e^{M_{1}}\right)\right\rangle_{1}\left\langle\chi_{R}\left(e^{M_{2}}\right)\right\rangle_{2}
$$

- $w(R)=0 \Rightarrow$ The (wormhole) saddle breaks $\mathcal{G}_{1} \times \mathcal{G}_{2}$ to $\mathcal{G}_{\text {diag. }}$. (ex: $16_{1} \times 16_{2} \rightarrow 16_{\text {diag }}$ - identification of supercharges)

- If we weigh the average with the quadratic Casimir $e^{w(R)}=e^{-L C_{R}^{(2)}} \quad(2 \mathrm{~d}-\mathrm{YM})$, \Rightarrow the S^{1} 's start to separate (cylinder)
- We can still find the resolvent in this case using the techniques in [Gross-Matytsin, Kazakov ...]
- The density becomes a "time dependent" function $\rho(\mu, \tau)$ obeying the EOMs of collective field theory with appropriate bcs (at $\tau=0, L$)
- Unfortunately we do not have control over the dual geometry to develop this idea from the bulk side (need a less symmetric ansatze)

Summary and Future

Summary and Future Directions

Summary

- We proposed a general class of microscopic models for Euclidean Wormholes, in terms of BQFTs coupled via a higher dimensional TQFT
- These models are reflection positive and do not require any ad hoc averaging (over couplings/ensembles of CFTs or otherwise)
- no deviation from the usual holographic prescription and rules

There is though a resulting sum over representations of the gauge group after we integrate out the "messenger" TQFT

- This makes the resulting field theoretic correlators to be compatible with dual computations on wormhole saddles
- We found that similar models can also arise by considering heavy correlated observables in otherwise decoupled QFTs
We analysed the case of correlated Wilson loops between copies of $\mathcal{N}=4$ SYM. They give rise to "bubbling" wormhole geometries in IIB
- In the $1 / 2$-BPS case we have exact control on both sides of the duality but the boundaries touch on one dimensional $S^{1} \subset S^{4}$'s (similar to Janus)

A Hilbert space interpretation of our constructions

- For Lorentzian wormholes (eternal BH): $\mathcal{H}=\mathcal{H}_{C F T 1} \otimes \mathcal{H}_{C F T 2}$ and

$$
|\Psi\rangle_{T F D}=\frac{1}{Z} \sum_{n} e^{-\frac{\beta}{2} E_{n}}\left|E_{n}\right\rangle_{1} \otimes\left|E_{n}\right\rangle_{2}
$$

- This correlates the energies of the two subsystems
- Our proposed models for Euclidean wormholes: Correlate ("entangle") $U(N)$ representations and not energies as in the TFD
- Realisation I: Presence of gauge constraints (messenger TQFT) - the Hilbert space is reduced into $\mathcal{H}=\sum_{R} \mathcal{H}_{R}^{1} \otimes \mathcal{H}_{R}^{2}$. One could think this in terms of states

$$
|\Psi\rangle_{R D}=\sum_{R} e^{w(R)}|R\rangle_{1} \otimes|R\rangle_{2}
$$

- Realisation II: Consider insertions of "heavy" operators that correlate the copies with a similar representation theoretic "entanglement" (ex: Wilson loops W_{R} in $\mathcal{N}=4 / I I B$)
- Future Realisation? An effective constraint on the Hilbert space could arise dynamically in the IR
("cross-confinement"/diagonal IR singlets: $U(N) \times U(N) \rightarrow U_{\text {diag. }}(N)$)

Future Directions

- The MQM non-singlet sectors are also relevant for black hole physics and involve similar sums over representations ($c=1 \mathrm{MQM}$). Connections? [Kazakov et al., PB - Papadoulaki]
- Other top down constructions embeddable in critical string theory ex: Gaiotto Witten systems on an interval [van Raamsdonk, Bachas, ..] Simplify by making the theory on the interval a TQFT "messenger"?
- Less (super)symmetric but still controllable examples of correlated loops or tripartite systems
- Understand better the Lorentzian continuations of our field theoretic setups and their holographic duals (Bang/Crunch Cosmologies) - a $\Lambda<0$ alternative to the dS/CFT correspondence?
- Study (target space) Euclidean wormhole backgrounds in string theory from the worldsheet perspective (WZW cosets?)
- Microscopic "wormhole gas" and replacement of Coleman's $|\alpha\rangle$ states with representations $|R\rangle$ of the dual QFT gauge group?

Thank you!

Scalar Correlators: Universal properties

- Momentum space: $\left\langle\mathcal{O}_{1} \mathcal{O}_{1}\right\rangle$ and $\left\langle\mathcal{O}_{2} \mathcal{O}_{2}\right\rangle$ have a similar behaviour in the UV as in the presence of a single boundary (power law divergence)
- In the IR they saturate to a constant positive value
- The cross correlator $\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle$ goes to zero in the UV and has a finite maximum in the IR
- Position space: $\left(E A d S_{2}\right)$ they behave as $\sim 1 / \sinh ^{2 \Delta_{+}}(\Delta \tau)$ and $\sim 1 / \cosh ^{2 \Delta_{+}}(\Delta \tau)$ respectively \Rightarrow No short distance singularity for the cross-correlator
- The qualitative behavior of the correlators is similar for several types of solutions \Rightarrow Universality
- Define: $J_{M Q M_{1,2}}^{\tau}=\delta S_{M Q M_{1,2}} / \delta A_{\tau}^{1,2}-U(N) \mathrm{MQM}$ charges
- For τ non-compact: $A_{\tau}=0 \Rightarrow$ non-perturbative constraint

$$
\frac{1}{2 g_{Y M}^{2} L} J_{Y M}^{\tau}=\frac{1}{2 g_{Y M}^{2} L}\left[W^{-1}, \partial^{\tau} W\right]=J_{M Q M_{1}}^{\tau}-J_{M Q M_{2}}^{\tau}, \quad W=\mathcal{P} \exp \left(\int_{-L}^{L} d z A_{z}\right)
$$

W a Wilson line extending across the boundaries

- Each MQM Hamiltonian is $\left(M=U^{\dagger} \Lambda U, J=U^{\dagger} K U\right)$

$$
\hat{H}_{M Q M}^{R}=\left[-\frac{1}{2} \sum_{i}\left(\frac{\partial^{2}}{\partial \lambda_{i}^{2}}+V\left(\lambda_{i}\right)\right)+\frac{1}{2} \sum_{i<j} \frac{K_{i j}^{R} K_{i j}^{R}}{\left(\lambda_{i}-\lambda_{j}\right)^{2}}\right]
$$

acting on wave-functions $\Psi_{R}(\lambda)=\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right) \tilde{\Psi}_{R}(\lambda)$ transforming in the $U(N)$ representation R

- The representations of $M Q M_{1,2}$ are "entangled" by the constraint

Cross-Correlators

- The n-point cross-correlator takes the general form
$\left\langle O_{i_{1}}\left(\tau_{i_{1}}\right) \ldots \tilde{O}_{i_{2}}\left(\tau_{i_{2}}\right) \ldots\right\rangle=\sum_{R}\left\langle O_{i_{1}}\left(\tau_{i_{1}}\right) \ldots\right\rangle_{1}^{R}\left\langle\tilde{O}_{i_{2}}\left(\tau_{i_{2}}\right) \ldots\right\rangle_{2}^{R} e^{-L \frac{g_{Y M}^{2}}{n} C_{R}^{(2)}+i \theta|R|}$
where i_{1} refers to the first and i_{2} to the second MQM subsystem
- This correlator generically only depends separately on the differences $\tau_{i_{1}}-\tau_{j_{1}}$ and $\tau_{i_{2}}-\tau_{j_{2}}$ and not on time differences that mix the 1,2 sub-indices, or $O_{i_{1}}$ with $\tilde{O}_{i_{2}}$ operators
- No short distance singularities in the cross-correlators!
- The absence of short distance singularities in the cross correlators is a robust-universal feature of dual wormhole backgrounds

