AdS/BCFT from Bootstrap Construction of Gravity with particle & brane

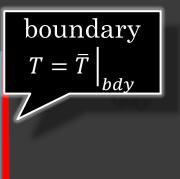
Caltech Yuya Kusuki

Based on [2206.03035] & [2210.03107], a collaboration with Wei

Contents

- Introduction
 - Issues in AdS/BCFT
 - Summary of Results
- Review
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
- Refined RT formula
- Discussion

BCFT [Cardy]



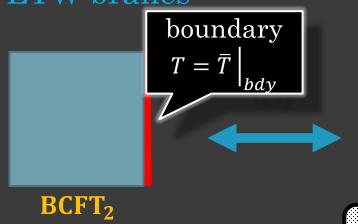
BCFT₂

BCFT

AdS/BCFT [Takayanagi] [Fujita, Takayanagi, Tonni]

$$I_{grav} = -\frac{1}{16\pi G_N} \int_M d^3x \, \sqrt{g}(R-2\Lambda) + \sum_i m_i \int dl_i - \frac{1}{8\pi G_N} \int_Q d^2x \, \sqrt{h}(K-T)$$

Semiclassical gravity ($c = \frac{3}{2G_N} \gg 1$) with massive particles and ETW branes



BCFT

AdS with ETW brane ∂(ETW) = bdy.of CFT

AdS/BCFT [Takayanagi] [Fujita, Takayanagi, Tonni]

$$I_{grav} = -\frac{1}{16\pi G_N} \int_M d^3x \, \sqrt{g}(R-2\Lambda) + \sum_i m_i \int dl_i - \frac{1}{8\pi G_N} \int_Q d^2x \, \sqrt{h}(K-T)$$

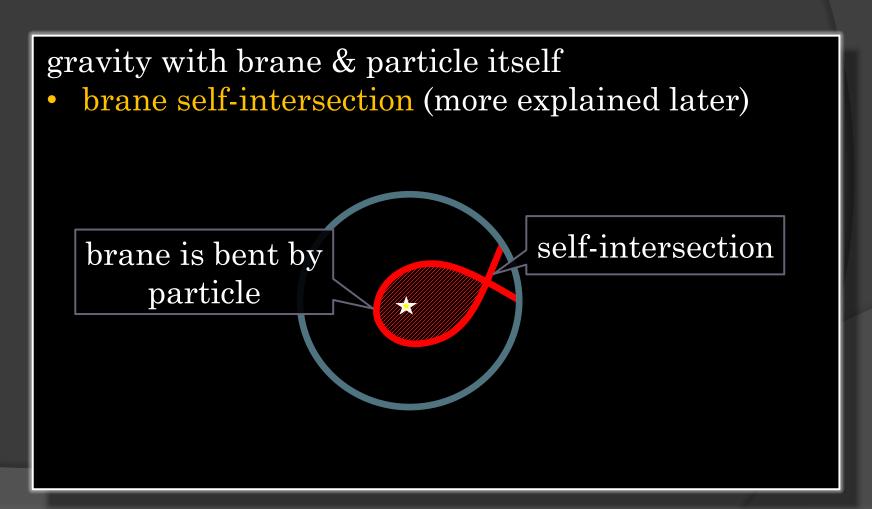
Induced metric: $h_{\mu\nu} = g_{\mu\nu} - n_{\mu} \overline{n_{\nu}}$,

Extrinsic curvature: $K_{\mu\nu} = h_{\mu}^{\ \rho} h_{\nu}^{\ \lambda} \nabla_{\rho} n_{\lambda}$

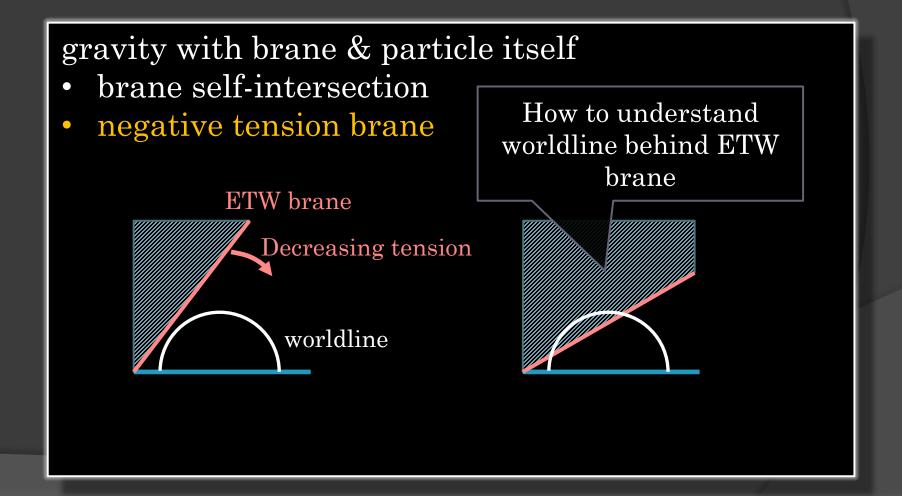
Neumann b.c. is imposed on the brane (Einstein eq. of brane).

$$K_{ab} - Kh_{ab} = -Th_{ab}$$

What is less understood?



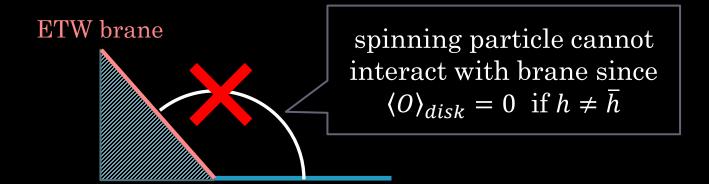
What is less understood?



What is less understood?

gravity with brane & particle itself

- brane self-intersection
- negative tension brane
- how to deal with spinning particle



What is less understood?

gravity with brane & particle itself

- brane self-intersection
- negative tension brane
- how to deal with spinning particle

Why less understood?

We need details deep into the bulk, unlike a common case where FG expansion works.

- → we need to solve Einstein eq. explicitly.
- \rightarrow this is difficult & complicated.

What is less understood?

gravity with brane & particle itself

how to address the issues on CFT side

conformal bootstrap?

Not so explored in AdS/BCFT.

No (or limited) know-how to apply bootstrap to address the issues in AdS/BCFT

What is less understood?

gravity with brane & particle itself

how to address the issues on CFT side

conformal bootstrap?

If we succeed in translating the issues into a bootstrap problem, we can easily give a rigorous answer.

What is less understood?

gravity with brane & particle itself

how to address the issues on CFT side

bottom-up AdS/BCFT

• Naïve RT-formula cannot reproduce

$$S_A^{(n)} = \frac{c}{12} \left(1 + \frac{1}{n} \right) + \log g$$

What is less understood?

gravity with brane & particle itself

- brane self-intersection
- negative tension brane
- how to deal with spinning particle

Why less understood?

We need details deep into the bulk, unlike a common case where FG expansion works.

- \rightarrow we need to solve Einstein eq. explicitly.
- \rightarrow this is difficult & complicated.

What is less understood?

gravity with brane & particle itself

how to address the issues on CFT side

bottom-up AdS/BCFT

• Naïve RT-formula cannot reproduce

$$S_A^{(n)} = \frac{c}{12} \left(1 + \frac{1}{n} \right) + \log g$$

What is less understood?

gravity with brane & particle itself

how to address the issues on CFT side

bottom-up AdS/BCFT

- Naïve RT-formula cannot reproduce $S_A^{(n)}$
- gravity dual of boundary primary (explained later)

What is less understood?

gravity with brane & particle itself

how to address the issues on CFT side

bottom-up AdS/BCFT

- Naïve RT-formula cannot reproduce $S_A^{(n)}$
- gravity dual of boundary primary (explained later)
- naïve and bottom-up construction
 - → may need to be refined,
 when considering complicated setups,
 like gravity with branes + massive particles

First part:

We address the issues with bootstrap.

The bootstrap tells us a robust answer on how to resolve the issues.

It implies the bootstrap is useful even in AdS/BCFT.

gravity with brane & particle itself

- brane self-intersection
- negative tension brane
- how to deal with spinning particle

how to address the issues on CFT side

conformal bootstrap?

Second part:

We develop a simple way to construct gravity with brane & particle.

The solution tells us how to resolve the issues from the gravity side.

Moreover, this is completely consistent with the bootstrap result.

We need details deep into the bulk, unlike a common case where FG expansion works.

- \rightarrow we need to solve Einstein eq. explicitly.
- → this is difficult & complicated.

We will overcome this point

Third part: (skipped)

We give a refined RT formula, which completely reproduces $S_A^{(n)}$ in AdS/BCFT. We also give the gravity dual of boundary primary.

bottom-up AdS/BCFT

- Naïve RT-formula cannot reproduce $S_A^{(n)}$
- gravity dual of boundary primary
- naïve and bottom-up construction

Third part:

Everything is consistent.

It implies that the bottom-up AdS/BCFT nicely works without any refinements.

bottom-up AdS/BCFT

- Naïve RT-formula cannot reproduce $S_A^{(n)}$
- gravity dual of boundary primary
- naïve and bottom-up construction

Short Summary

- Bootstrapping AdS/BCFT to understand
 - brane self-intersection
 - negative tension brane
 - how to deal with spinning particle
- Constructing gravity with brane & particle
 - in a simple way, using cut & paste
 - our new construction gives results consistent with bootstrap.

Note: There are many loopholes in gravity calculation. So, it is worth checking compared to robust results, i.e., results from bootstrap.

- Bonus
 - refined RT-formula
 - gravity dual of boundary primary

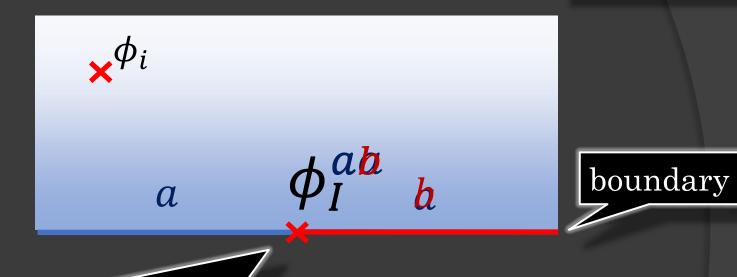
Contents

- Introduction
- Review
 - Review of BCFT
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
- Refined RT formula
- Discussion

Review of BCFT

i: bulk

I: boundary

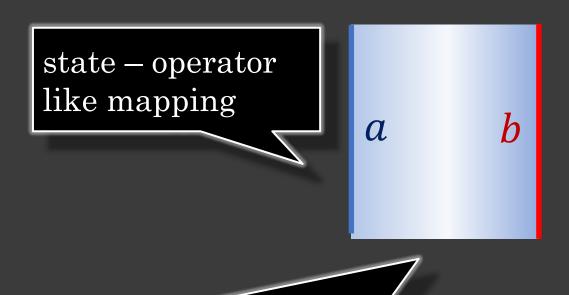


New ingredient (boundary primary)

Primary operator living on boundary, which can change boundary condition.

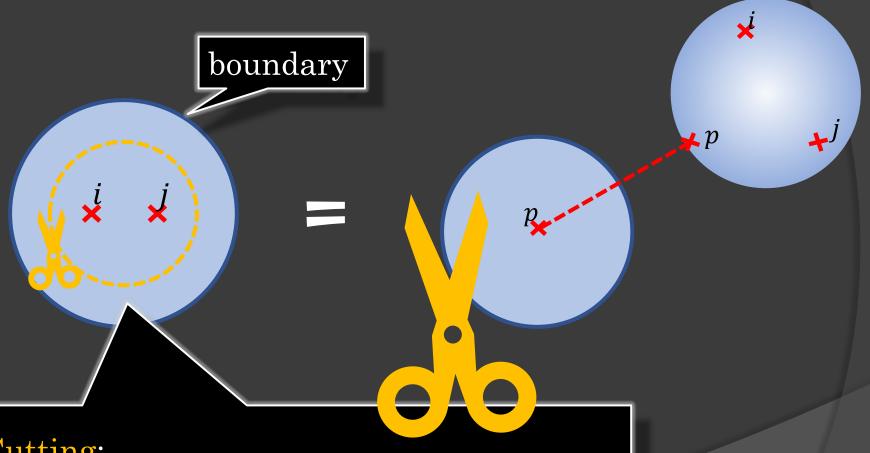
Same transformation law under conformal mapping.

Review of BCFT



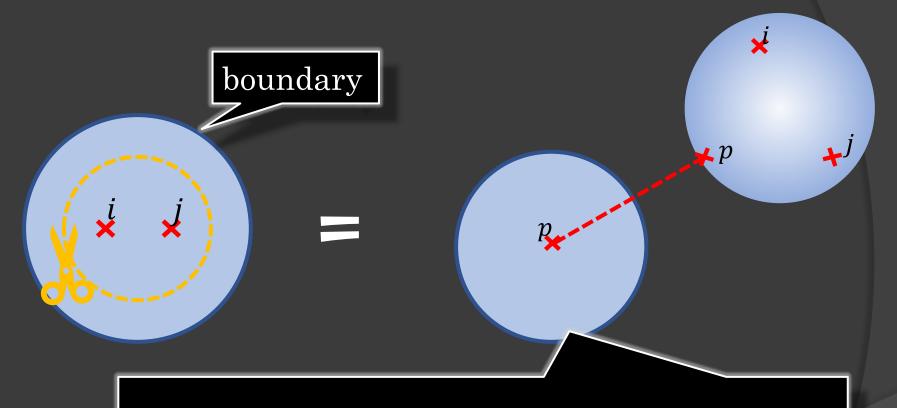
Conformal weight of ϕ_I^{ab}

= Energy corresponding to the state on the strip



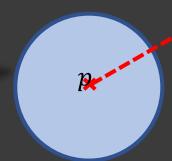
Cutting:

Inserting (bulk operator) complete set



$$\sum_{p} C_{p0} C_{ijp} \mathcal{F}^{ji}_{\bar{\jmath}\bar{\iota}}(p|z)$$

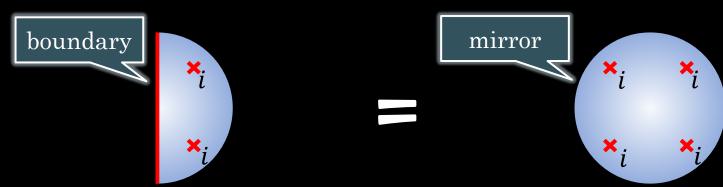
 $\mathcal{F}_{\overline{n}}^{ji}$ is fixed by conformal sym. & mirror method



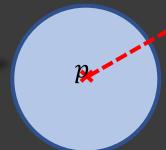
Note:

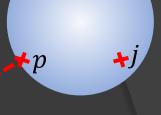
 $\mathcal{F}_{\overline{u}}^{ji}(p|z) = \text{Virasoro block}.$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method



kinematic part = conformal block



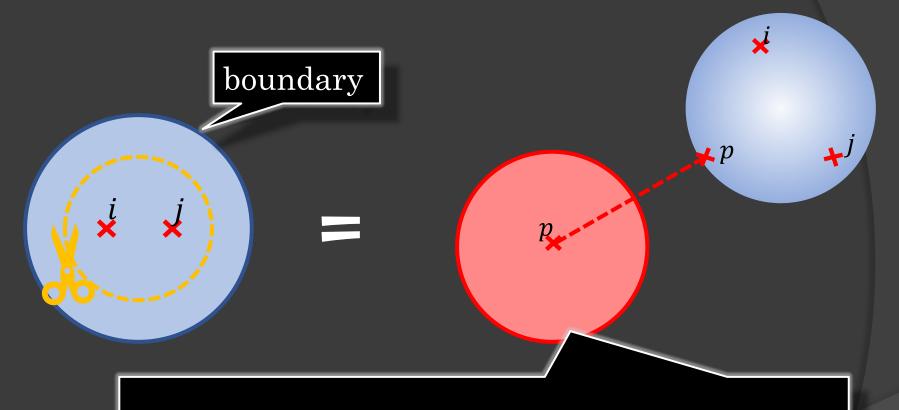


Note:

 $\mathcal{F}_{\overline{u}}^{ji}(p|z) = \text{Virasoro block}.$

Because Ward id (with bdy) is equivalent to Ward id (without bdy) by mirror method

$$\begin{split} \sum_{p,\bar{p},N,\bar{N}} \langle \phi_{i} | \phi_{j} | L_{-N} \phi_{p} \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \langle L_{-N} L_{-\bar{N}} \phi_{p,\bar{p}} \rangle_{disk} \\ &= \sum_{p,\bar{p},N,\bar{N}} \langle \phi_{i} | \phi_{j} | L_{-N} \phi_{p} \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \langle L_{-N} \phi_{p} | L_{-\bar{N}} \phi_{\bar{p}} \rangle \\ &= \sum_{p,\bar{p},N,\bar{N}} \langle \phi_{i} | \phi_{j} | L_{-N} \phi_{p} \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-N} \phi_{p} \rangle \langle \phi_{\bar{\imath}} | \phi_{\bar{\jmath}} | L_{-N} \phi_{p} \rangle \end{split}$$



$$\sum_{p} C_{p0} C_{ijp} \mathcal{F}_{\bar{j}\bar{\iota}}^{ji}(p|z)$$

New ingredient: bulk-boundary OPE coef.

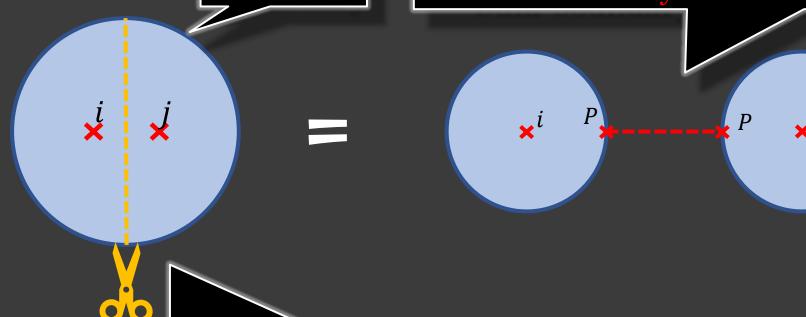
Review

or equivalently, using bulk-boundary OPE

$$\phi_i(z) \sim \sum_P C_{iP}(2\Im z)^{h_P - h_i - \overline{h}_i} \phi_P(\Re z) + \cdots$$

boundary

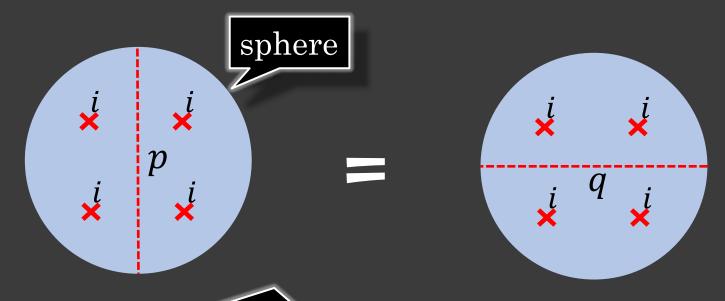
bulk-boundary OPE coef.



Cutting:

Inserting (boundary operator) complete set

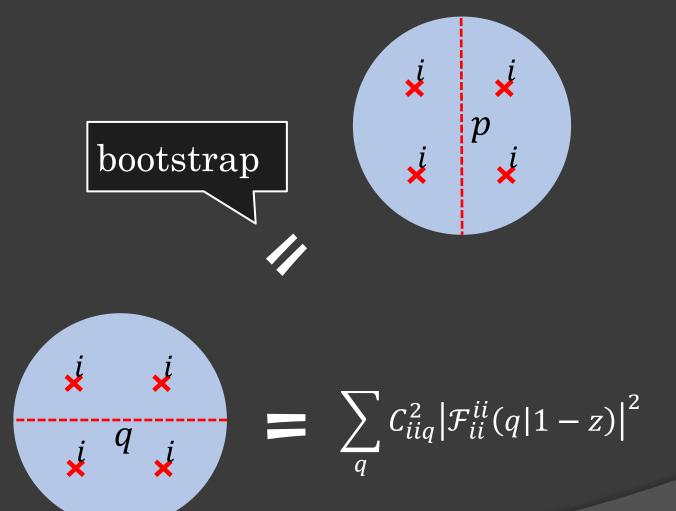
Bootstrap



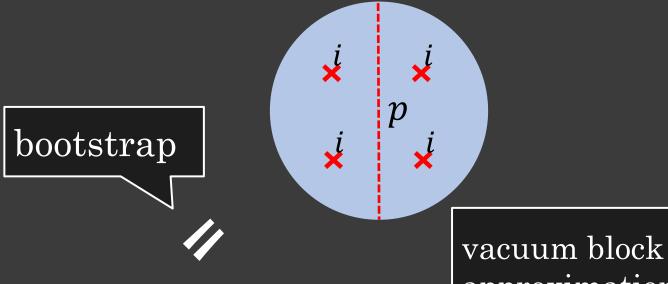
$$\sum_{p} C_{iip}^{2} |\mathcal{F}_{ii}^{ii}(p|z)|^{2} = \sum_{q} C_{iiq}^{2} |\mathcal{F}_{ii}^{ii}(q|1-z)|^{2}$$

→ constraints on CFT data

Analytic Bootstrap



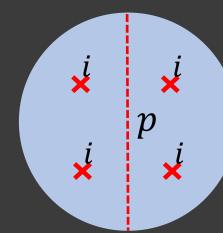
Analytic Bootstrap



vacuum block approximation by $z, \bar{z} \to 0$ (Cardy formula) $\bar{z} \to 0$ (large-spin)

Analytic Bootstra

bootstrap



Now it is expressed in terms of the same basis

$$\int \mathrm{d}\alpha_q \, C_{iiq}^2 \left| \mathcal{F}_{ii}^{ii}(q|z) \right|^2$$

It is possible to extract OPE coef. by the coefficient comparison.



$$\simeq \mathcal{F}_{ii}^{ii}(0|1-z)$$

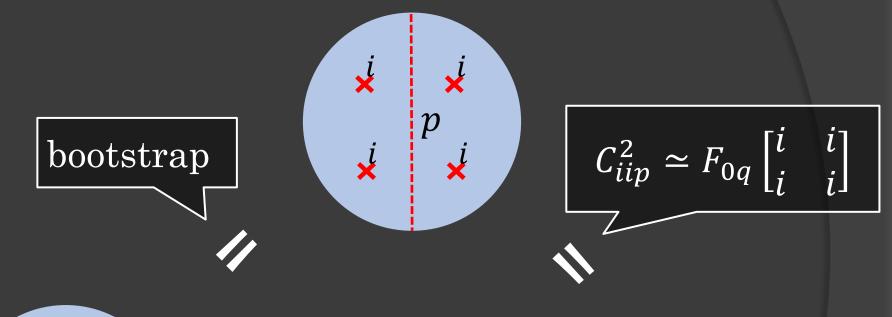
Vacuum block approximation

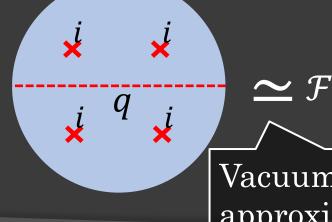
$$\simeq \mathcal{F}_{ii}^{ii}(0|1-z) = \int d\alpha_q F_{0q} \begin{bmatrix} i & i \\ i & i \end{bmatrix} \mathcal{F}_{ii}^{ii}(q|z)$$

Fusion transformation

Analytic Bootstrap

[Collier, Gobeil, Maxfield, Perlmutter]





$$\simeq \mathcal{F}_{ii}^{ii}(0|1-z)$$

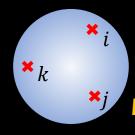
Vacuum block approximation

$$\simeq \mathcal{F}_{ii}^{ii}(0|1-z) = \int d\alpha_q F_{0q} \begin{bmatrix} i & i \\ i & i \end{bmatrix} \mathcal{F}_{ii}^{ii}(q|z)$$

Fusion transformation

Analytic Bootstrap in BCFT

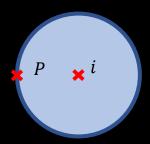
Universal formula in BCFT



[Collier, Maloney, Maxfield, Tsiares]

$$\equiv C_{ijk}$$

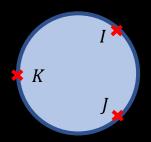
Bulk-bulk OPE coefficient



[YK], [Numasawa, Tsiares]

$$\equiv C_{iP}$$

Bulk-boundary OPE coefficient



[YK], [Numasawa, Tsiares]

$$\equiv C_{IJK}$$

Bdy-bdy-bdy OPE coefficient

[Cardy]

 $\rho(h,h)$

Bulk primary spectrum

[YK], [Numasawa, Tsiares]

 $\rho^{\overline{bdy}}(\overline{h})$

Bdy primary spectrum

[Collier, Mazac, Wang]

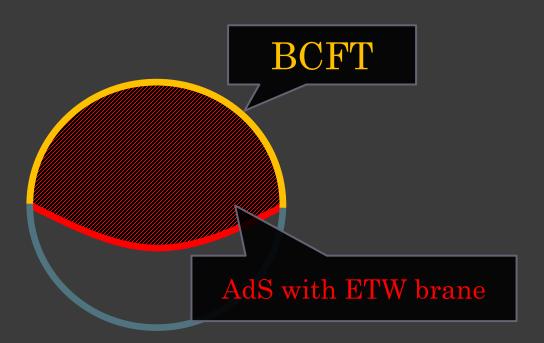
g

Boundary entropy

Contents

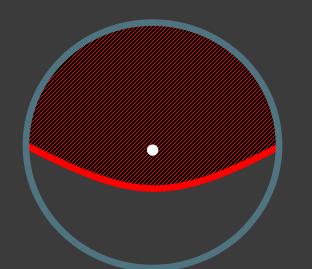
- Introduction
- Review
- Bootstrapping AdS/BCFT
 - How to bootstrap AdS/BCFT?
 - Results from bootstrap
- Construction of gravity with brane & particle
- Refined RT formula
- Discussion

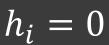
Issue in AdS/BCFT



Issue in AdS/BCFT

Self-intersection?





 $0 < h_i < \frac{c}{32}$

$$\frac{c}{32} < h_0$$

Massive particle produces deficit angle

$$\delta\theta = 2\pi \left(1 - \sqrt{1 - \frac{c}{24}h_i}\right)$$

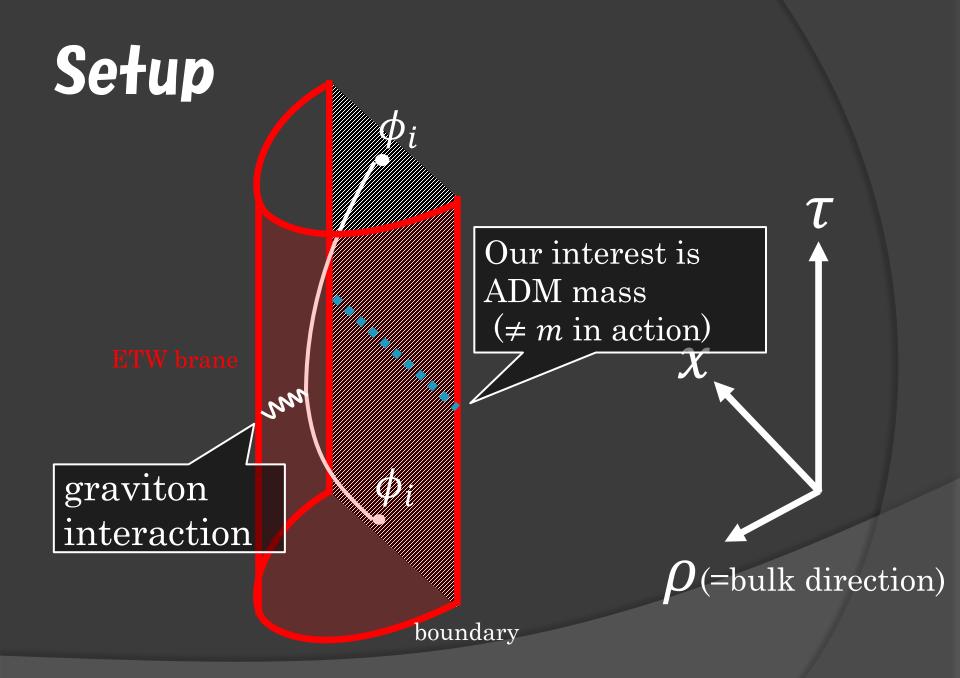
Pointed out by

[Geng, Lust, Mishra, Wakeham]

[Kawamoto, Mori, Suzuki, Takayanagi]

[Bianchi, De Angelis, Meineri]

The first one proposed that $h_i \in \left[\frac{c}{32}, \frac{c}{24}\right)$ should be excluded in holographic CFT



Setup graviton interaction

Q. What is input to solve bootstrap?

A. No interaction between particle and brane, except for gravitons.

boundary

Bootstrap

Property of this solution to Einstein's equation:

No interaction between particle and brane, except for gravitons.

[Takayanagi], [Fujita, Takayanagi, Tonni], [Suzuki, Takayanagi]

CFT counterpart:

For states $\{p\}$ in OPE between ϕ_i s, (in large c)

$$C_{p\mathbb{I}}^a = \delta_{p\mathbb{I}}$$

Note: This is possible at least in the case $p \neq \bar{p}$.

Comment

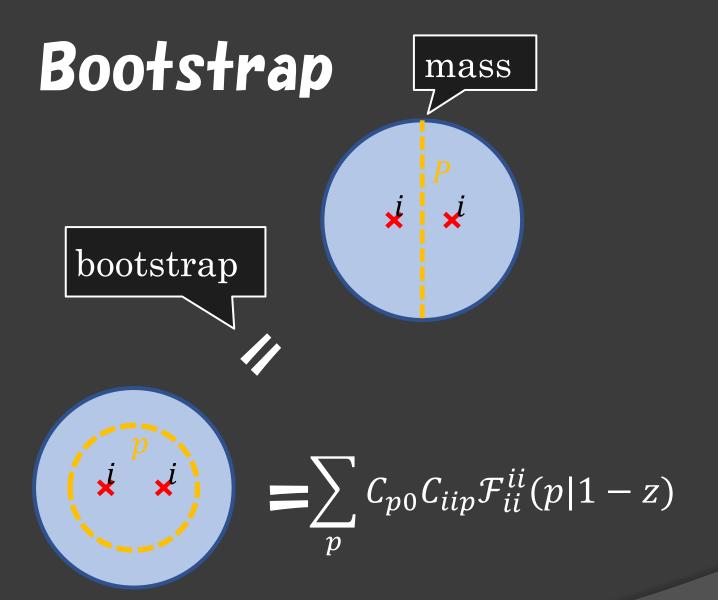
CFT counterpart:

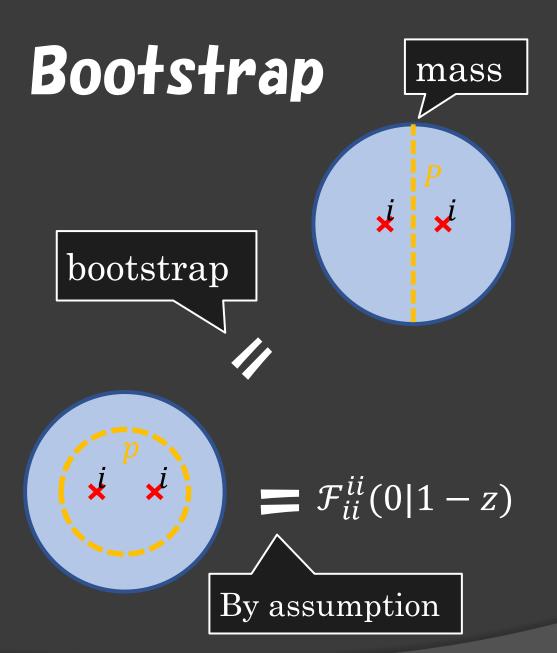
For states $\{p\}$ in OPE between ϕ_i s,

$$C_{p\mathbb{I}}^a = \delta_{p\mathbb{I}}$$

This assumption is related to the island model.

In this context, this may be interpreted as boundary averaging (see details in [YK])

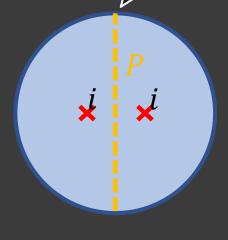




Bootstrap

mass

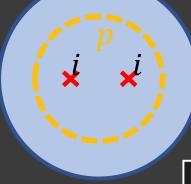
bootstrap



Liouville momentum

$$c = 1 + 6Q^2,$$

$$h_i = \alpha_i(Q - \alpha_i)$$



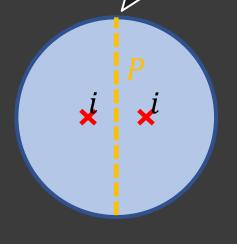
$$= \mathcal{F}_{ii}^{ii}(0|1-z)$$

 $= \mathcal{F}_{ii}^{ii}(0|1-z) = \begin{bmatrix} d\alpha_P F_{0P} \begin{bmatrix} i & i \\ i & i \end{bmatrix} \mathcal{F}_{ii}^{ii}(P|z)$

By assumption

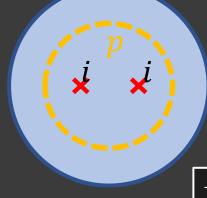
Fusion transformation

mass



ADM mass = lowest primary dimension

$$\alpha_P = 2\alpha_i$$



$$= \mathcal{F}_{ii}^{ii}(0|1-z) = \int d\alpha_P F_{0P} \begin{bmatrix} i & i \\ i & i \end{bmatrix} \mathcal{F}_{ii}^{ii}(P|z)$$

By assumption

Fusion transformation

Implication [YK]

$$c = 1 + 6Q^2,$$

$$h_i = \alpha_i(Q - \alpha_i)$$

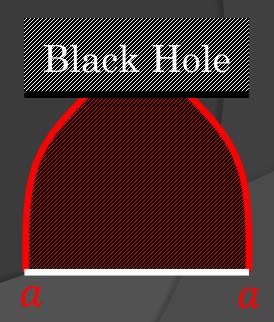
Relation between ADM mass & mass of particle $\alpha_P = 2\alpha_i$

It implies that black hole forms when

$$h_i \ge \frac{c}{32} \quad \Leftrightarrow \quad h_P \ge \frac{c}{24}$$

This completely matches selfintersection bound

→ self-intersection can be avoided by blackhole formation



More results [YK, Wei]

The bootstrap also tells us the following theorems,

Relation between ADM mass & mass of spinning particle

$$\alpha_P = \alpha_i + \overline{\alpha}_i$$

Non-sensitivity to brane tension

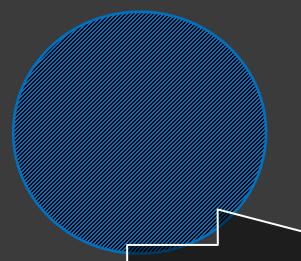
The relation between ADM mass & particle mass is true even if brane tension is negative.

Contents

- Introduction
- Review
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
 - Cut & Paste construction
 - Gravity with brane & particle
 - Gravity with spinning particle
 - Gravity with negative tension brane
- Refined RT formula
- Discussion

How can we construct a conical defect geometry?

→ very simple way by cut & paste

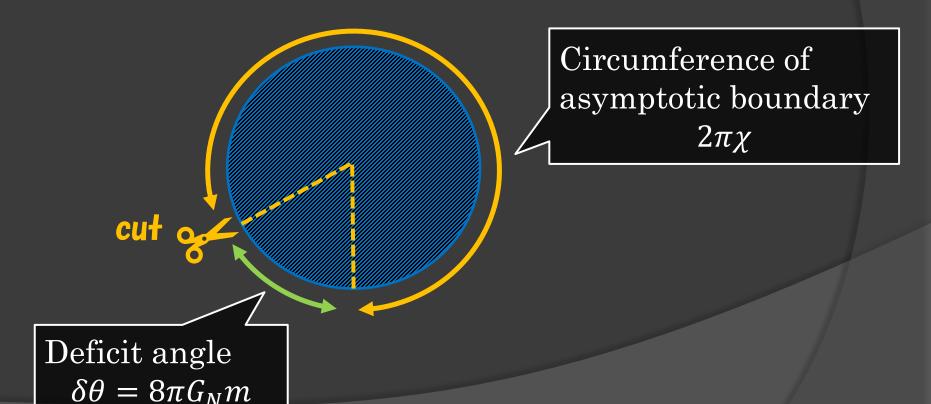


Time slice on

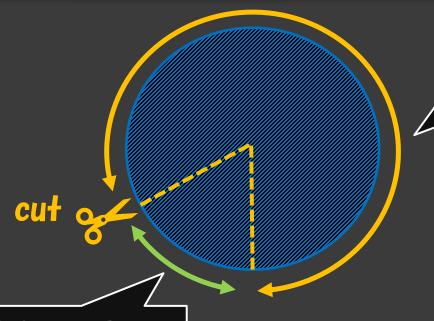
$$ds^{2} = (1+r^{2})dt^{2} + \frac{dr^{2}}{1+r^{2}} + r^{2}d\theta^{2}$$

How can we construct a conical defect geometry?

→ very simple way by cut & paste



$$I_{grav} = -\frac{1}{16\pi G_N} \int_M d^3x \, \sqrt{g} (R-2\Lambda) + \sum_i m_i \int dl_i - \frac{1}{8\pi G_N} \int_Q d^2x \, \sqrt{h} (K-T)$$



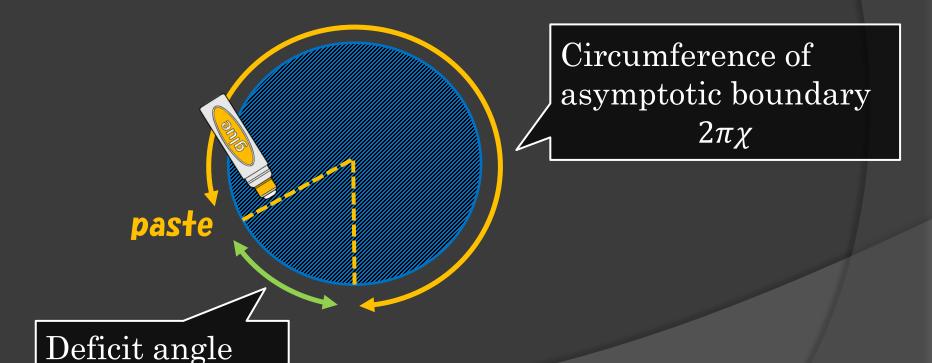
Circumference of asymptotic boundary $2\pi\chi$

Deficit angle $\delta\theta = 8\pi G_N m$

How can we construct a conical defect geometry?

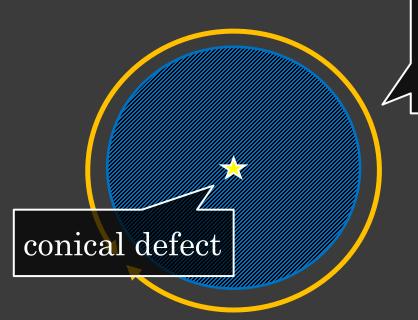
→ very simple way by cut & paste

 $\delta\theta = 8\pi G_N m$



How can we construct a conical defect geometry?

→ very simple way by cut & paste



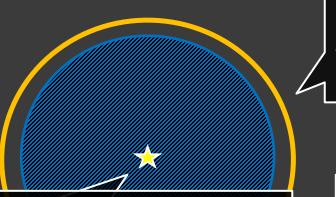
Circumference of asymptotic boundary 2π

Rescale to compare with conformal dimension

$$\theta \to \theta' = \frac{1}{\chi}\theta$$
$$t \to t' = \frac{1}{\chi}t$$

How can we construct a conical defect geometry?

→ very simple way by cut & paste



Circumference of asymptotic boundary 2π

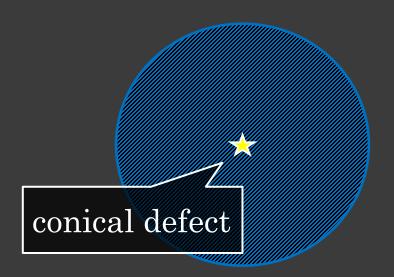
Note: ADM mass is not scalar, so we should consider an appropriate coordinate to identify ADM mass to conformal dimension

Rescale to compare with conformal dimension

$$\theta \to \theta' = \frac{1}{\chi}\theta$$
$$t \to t' = \frac{1}{\chi}t$$

How can we construct a conical defect geometry?

→ very simple way by cut & paste



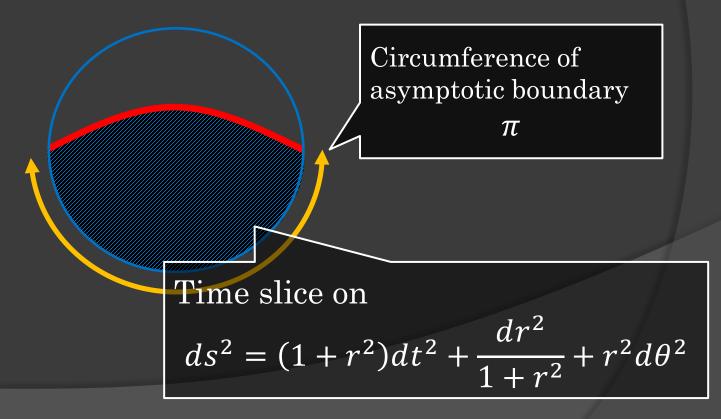
$$E_{ADM} = \int_0^{2\pi} d\theta \, T_{tt} = -\frac{\chi^2}{8G_N}$$

This leads to the well-known relation,

$$E_{ADM} + E_{Casimir} = 2h_i$$

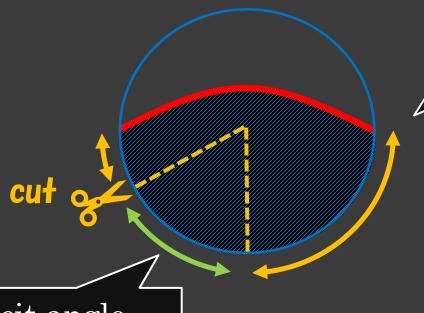
How can we construct a conical defect geometry with a brane?

→ cut & paste in AdS/BCFT



How can we construct a conical defect geometry with a brane?

→ cut & paste in AdS/BCFT



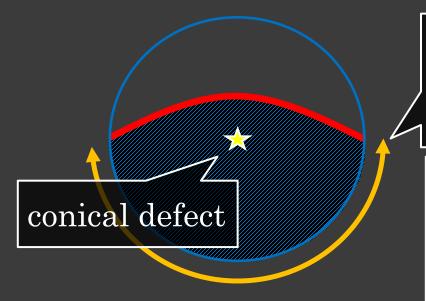
Circumference of asymptotic boundary

$$\pi(2\chi-1)$$

Deficit angle $\delta\theta = 8\pi G_N m$

How can we construct a conical defect geometry with a brane?

→ cut & paste in AdS/BCFT



Circumference of asymptotic boundary

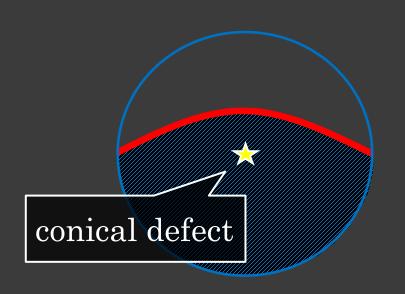
 π

Rescale to compare with conformal dimension

$$\theta \to \theta' = \frac{1}{2\chi - 1}\theta$$
$$t \to t' = \frac{1}{2\chi - 1}t$$

How can we construct a conical defect geometry with a brane?

→ cut & paste in AdS/BCFT



$$E_{ADM} = \int_0^{2\pi} d\theta \, T_{tt} = -\frac{(2\chi - 1)^2}{16G_N}$$

This leads to

$$E_{ADM} + E_{Casimir} = 2\alpha_i(Q - 2\alpha_i) \neq 2h_i$$

Particle is attracted close to brane by gravity force. This interaction changes the ADM mass.

Implication [YK]

$$c = 1 + 6Q^2,$$

$$h_i = \alpha_i(Q - \alpha_i)$$

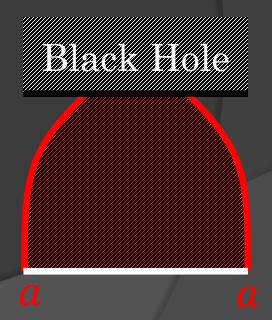
Relation between ADM mass & mass of particle $\alpha_P = 2\alpha_i$

It implies that black hole forms when

$$h_i \ge \frac{c}{32} \quad \Leftrightarrow \quad h_P \ge \frac{c}{24}$$

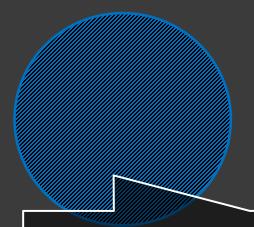
This completely matches selfintersection bound

→ self-intersection can be avoided by blackhole formation



How can we construct a spinning defect geometry?

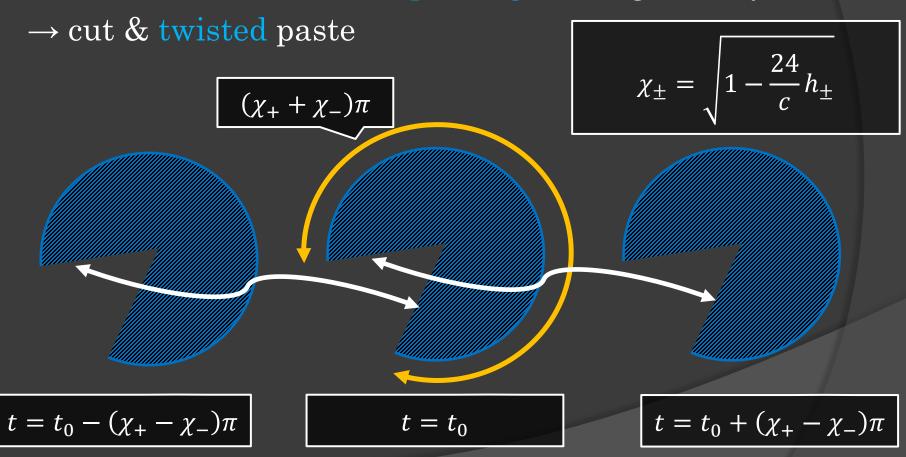
→ cut & twisted paste



Time slice on

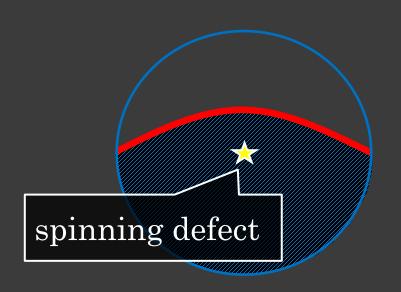
$$ds^{2} = (1+r^{2})dt^{2} + \frac{dr^{2}}{1+r^{2}} + r^{2}d\theta^{2}$$

How can we construct a spinning defect geometry?



How can we construct a spinning defect geometry?

→ cut & twisted paste



By this construction, we obtain the selfintersection bound in the spinning defect geometry,

$$(\chi_+ + \chi_i)\pi < \pi$$

This matches the black hole threshold predicted from bootstrap.

More results [YK, Wei]

The bootstrap also tells us the following theorems,

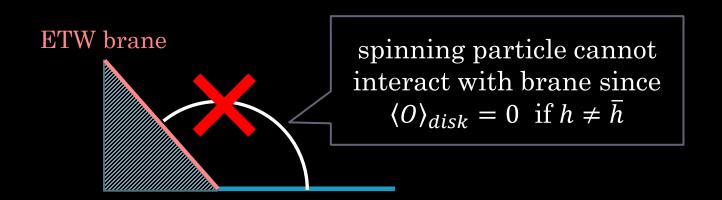
Relation between ADM mass & mass of spinning particle

$$\alpha_P = \alpha_i + \overline{\alpha}_i$$

Then, the black hole threshold is

$$\alpha_i + \overline{\alpha_i} = \frac{Q}{2}$$

One-point function

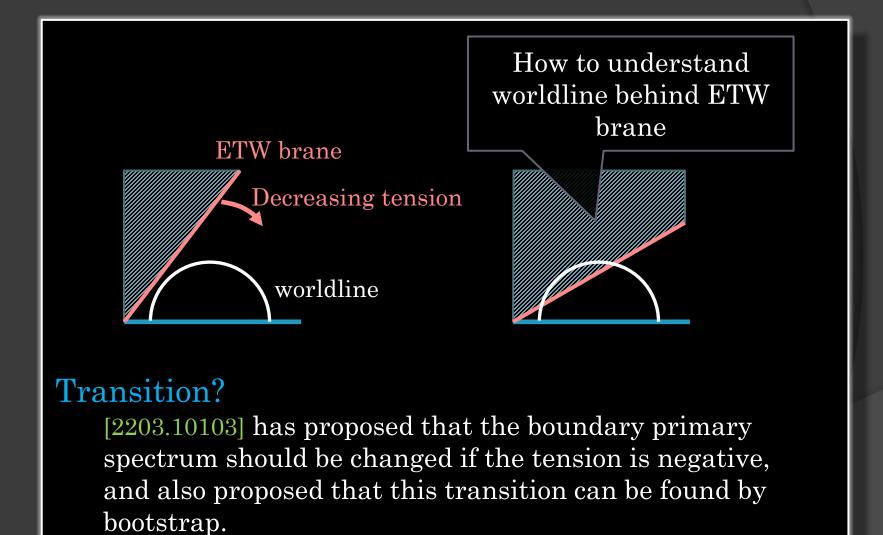


Twisted identification leads to mismatch of brane. Such a singular configuration is not a solution. This explains

$$\langle O \rangle_{disk} = 0 \text{ if } h \neq \bar{h}$$

from the gravity side.

Negative tension brane



More results [YK, Wei]

The bootstrap also tells us the following theorems,

We should find the mechanism to explain this.

rticle

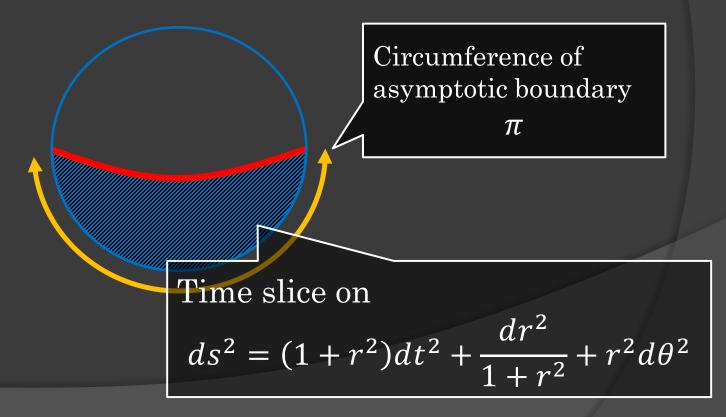
$$\alpha_P = \alpha_i$$

Non-sensitivity to brane tension

The relation between ADM mass & particle mass is true even if brane tension is negative.

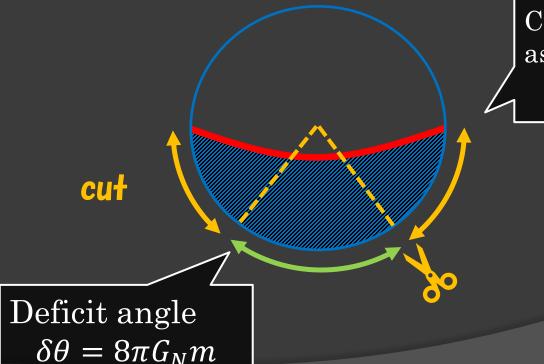
How can we construct a conical defect geometry with a negative tension brane?

→ cut & paste in AdS/BCFT



How can we construct a conical defect geometry with a negative tension brane?

→ cut & paste in AdS/BCFT

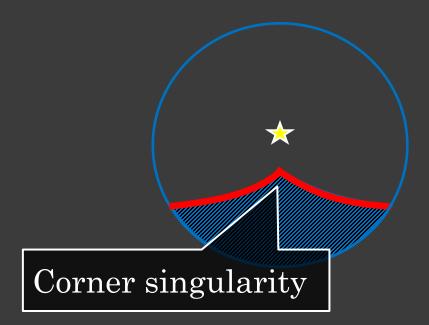


Circumference of asymptotic boundary

$$\pi(2\chi-1)$$

How can we construct a conical defect geometry with a negative tension brane?

→ cut & paste in AdS/BCFT



$$I_{grav} = -\frac{1}{16\pi G_N} \int_{M} d^3x \sqrt{g} (R - 2\Lambda) + \sum_{i} m_i \int dl_i - \frac{1}{8\pi G_N} \int_{Q} d^2x \sqrt{h} (K - T)$$

 $-\frac{1}{8\pi G_N}\int_C \sqrt{\eta}(\Theta-T_C)$

 $η_{μν}$: induced metric on C Θ: internal angle between

branes

 T_C : tension of corner defect

Corner singularity

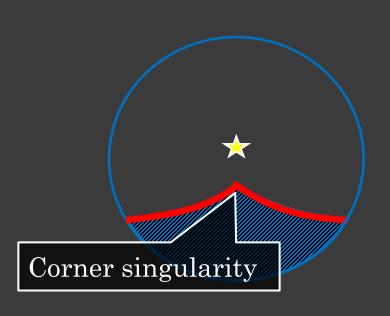
Note:

Generalized Hayward term has additional parameter T_C .

However, for the action to give solutions, T_C is dynamically determined by T and m_i

How can we construct a conical defect geometry with a negative tension brane?

→ cut & paste in AdS/BCFT



$$E_{ADM} = \int_0^{2\pi} d\theta \, T_{tt} = -\frac{(2\chi - 1)^2}{16G_N}$$

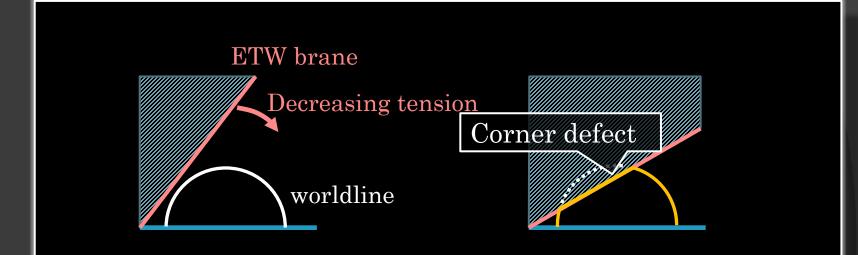
This leads to

$$E_{ADM} + E_{Casimir} = 2\alpha_i(Q - 2\alpha_i)$$

While the brane configuration looks sensitive to sign of tension,

ADM mass is not sensitive to whether tension is positive or negative.

Negative tension brane



The singularity behind the ETW brane appears as a corner defect on the ETW brane.

This construction gives results consistent with conformal bootstrap.

Contents

- Introduction
- Review
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
- Refined RT formula
- Discussion

n-the modular Renyi entropy:

$$\tilde{S}_A^{(n)} = n^2 \frac{\partial}{\partial n} \frac{n-1}{n} S_A^{(n)}$$

Holographic dual:

$$\tilde{S}_A^{(n)} = \min_{\gamma_n} \frac{|\gamma_n|}{4G_N}$$

where γ_n is cosmic string with mass $m_n = \frac{1}{4G_N} \frac{n-1}{n}$

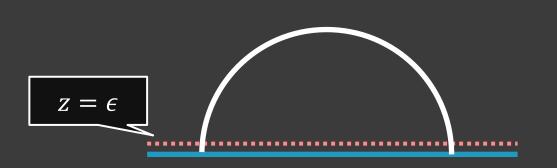
$$m_n = \frac{1}{4G_N} \frac{n-1}{n}$$

Holographic dual:

$$\tilde{S}_A^{(n)} = \min_{\gamma_n} \frac{|\gamma_n|}{4G_N}$$

Since the length of γ_n is UV-divergent, we need to specify cutoff, If we would like to see $O(\epsilon^0)$ parts, like boundary entropy term.

 \boldsymbol{Z}

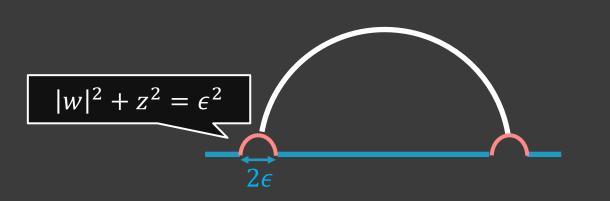


How about naïve cutoff surface?

$$\tilde{S}_A^{(n)} = \frac{1}{n} \log \frac{|A|}{\epsilon} + \log g + \frac{\log n}{\epsilon}$$

What is a reasonable cutoff surface?

NOT expected



What is a reasonable cutoff surface?

→ ETW brane ending on entangling surface

This nicely reproduces

$$\tilde{S}_A^{(n)} = \frac{1}{n} \log \frac{|A|}{\epsilon} + \log g$$

Contents

- Introduction
- Review
- Bootstrapping AdS/BCFT
- Construction of gravity with brane & particle
- Refined RT formula
- O Discussion

Discussion

• More bootstrapping AdS/BCFT?

We have six fundamental bootstrap equations in BCFT, but we only use one of them. We may be able to give more consistency conditions on branes from others.

Spinning particle

We present a way to induce spinning defects on gravity with branes. This can be applied to study more various setups including spinning particles

- Wormholes in AdS/BCFT [under consideration]
- Insights into braneworld holography
- Higher dimensional generalization