Introduction to the $T\overline{T}$ deformation

10/06/2020

Riccardo Conti

Department of Mathematical Physics, University of Lisbon

based on works in collaboration with R. Tateo and S. Negro

Bibliography

- A. B. Zamolodchikov, "Expectation value of composite field $T\overline{T}$ in two-dimensional quantum field theory"
- F. Smirnov and A. B. Zamolodchikov, "On space of integrable quantum field theories", Nucl. Phys. **B915** (2017) 363–383
- A. Cavaglià, S. Negro, I. M. Szécésnyi and R. Tateo, " $T\overline{T}$ deformed 2D Quantum Field Theories", JHEP **10** (2016) 112
- R. Conti, L. Iannella, S. Negro, R. Tateo, "Generalised Born-Infeld models, Lax operators and the $T\overline{T}$ perturbation", JHEP **1811** (2018) 007
- R. Conti, S. Negro, R. Tateo, "The $T\overline{T}$ perturbation and its geometric interpretation", JHEP **1902** (2019) 085.
- R. Conti, S. Negro, R. Tateo, "Conserved currents and $T\overline{T}_s$ irrelevant deformations of 2D integrable field theories", JHEP **1911** (2019) 120.

Plan of the talk

• Introduction: QFTs and deformations in the Renormalization Group (RG) framework

- Motivations
- Part I: definition of the $T\overline{T}$ deformation
- Part II: integrable structure of the $T\overline{T}$ deformation
- Part III: generalizations and further directions

Introduction

What are QFTs?

Path integral formulation:

- basic object is the action $\mathcal{A}[\Phi] = \int d\mathbf{x} \,\mathcal{L}[\Phi(\mathbf{x}), \partial_{\mu}\Phi(\mathbf{x}), ...]$ and the partition function $\mathcal{Z} = \int \mathcal{D}\Phi \,e^{-\mathcal{A}[\Phi]}$
- observables are correlation functions $\langle \mathcal{O}_{a_1}(\mathbf{x}_1) \cdot ... \cdot \mathcal{O}_{a_n}(\mathbf{x}_n) \rangle = \frac{1}{Z} \int \mathcal{D}\Phi \ \mathcal{O}_{a_1}(\mathbf{x}_1) \cdot ... \cdot \mathcal{O}_{a_n}(\mathbf{x}_n) \ e^{-\mathcal{A}[\Phi]}$

What are deformations of QFTs?

Renormalization Group (RG):

- set a cut-off scale Λ_0 and integrate over the modes with $\Lambda > \Lambda_0 \rightarrow \frac{\partial \mathcal{A}}{\partial l} = B(\{\mathcal{A}\})$ with $l = \log \Lambda$
- parametrize $\mathcal A$ with $\{\alpha_k\}_{k\geq 0}$ as $\mathcal A=\mathcal A^\star+\sum_{k\geq 0}\alpha_k\int d\mathbf x\,\mathcal O_k(\mathbf x)$

$$\frac{\partial \alpha_k}{\partial l} = B_k(\{\alpha_i\}) \quad \xrightarrow{\text{linearize+diagonalize}} \quad \frac{\partial \sigma_k}{\partial l} = (\Delta_k - d)\sigma_k + \mathcal{O}(\sigma^2)$$

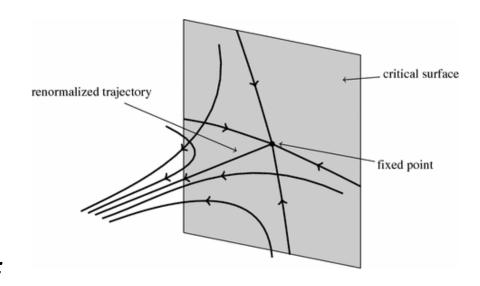
Linearized RG flow:
$$\sigma_k(\Lambda) = \left(\frac{\Lambda}{\Lambda_0}\right)^{\Delta_k - d} \sigma_k(\Lambda_0)$$

As Λ is lowered from Λ_0 we distinguish between:

- $\Delta_k d > 0$ (irrelevant operators): drive the theory back to the fixed point
- $\Delta_k d < 0$ (relevant operators): drive the theory away from the fixed point along an RG trajectory

RG flow in d=2

- Fixed points of the RG flow are Conformal Field Theories (CFTs);
- Relevant deformations of a CFT_{UV} flow, along an RG trajectory, into a CFT_{IR} with smaller central charge ($\emph{C-theorem}$); intermediate points are $non\text{-}scale\ invariant\ QFTs}$.
- Irrelevant deformations of QFTs usually shatter UV-completness; lead to Effective Field Theories (EFTs) with finite UV cut-off.



Motivations

Why should we study the $T\overline{T}$ deformation?

• Practical reasons:

- is under a high degree of control, i.e. exact flow equations for some quantities
- preserve existing symmetries of the seed theory, e.g. integrable structures
- give access to new integrable models → tool to generate new integrable models

Conceptual reasons:

- non-trivial and very unusual UV behaviour which admits analysis → **explore new kinds of QFTs**
 - Cardy (2016) Tolley (2019)

Dubovsky, Gorbenko, Mirbabayi (2017)

easy to handle

- relation to random geometry, ghost-free massive gravity and Jackiw-Teitelboim (JT) gravity
- insight into the nature of Holography → extend Holography beyond the AdS/CFT paradigm

McGough, Mezei, Verlinde (2016) & Giveon, Itzhaki, Kutasov (2017)

Part I definition of the $T\overline{T}$ deformation

Setup and convention

- d=2 QFT in Euclidean space-time with UV controlled by a CFT: $\mathcal{A}=\mathcal{A}_{\mathrm{CFT}}+\mu\int d\mathbf{x}~\mathcal{O}_{\Delta}(\mathbf{x})$ with $\Delta<2$ **convention**: cartesian coordinates $\mathbf{x}=(x^1,x^2)$ VS complex coordinates $\mathbf{z}=(z,\bar{z}):$ $\begin{cases}z=x^1+1x^2\\ \bar{z}=x^1-1x^2\end{cases}$
- conserved current: local translational and rotational symmetry $\implies \exists T^{\mu\nu}(\mathbf{x})$ (stress-energy tensor) s.t.
 - $T^{\mu\nu}=T^{\nu\mu}$;
 - $\frac{\partial}{\partial x^{\mu}} T^{\mu\nu}(\mathbf{x}) = 0$ (continuity equation);

<u>convention</u>: cartesian components $\{T^{11}, T^{12}, T^{22}\}$ VS complex components $\{T, \overline{T}, \Theta\}$

$$T^{11} = -(T + \overline{T} - 2\Theta)$$
, $T^{12} = T^{21} = \mathbb{i}\mathcal{P} = -\mathbb{i}(T - \overline{T})$, $T^{22} = -\mathcal{H} = T + \overline{T} + 2\Theta$

• conserved charges: $\frac{\partial}{\partial x^{\mu}} T^{\mu\nu}(\mathbf{x}) = 0 \implies \exists Q^{\mu} = \int_{C} T^{2\mu}(\mathbf{x}) \ dx^{1}$ s.t. $\frac{\partial}{\partial x^{2}} Q^{\mu} = 0$ energy and momentum: $E = -Q^{2}$ and $P = -\mathbb{i}Q^{1}$

The $T\overline{T}$ operator

Theorem (A. B. Zamolodchikov, 2004)

For any d=2 QFT with global translational symmetry, there exists a local operator $T\overline{T}(\mathbf{z})$ s.t.

i.
$$\lim_{\mathbf{z}' \to \mathbf{z}} T(\mathbf{z}) \overline{T}(\mathbf{z}') - \Theta(\mathbf{z}) \Theta(\mathbf{z}') = \frac{1}{4\pi^2} T \overline{T}(\mathbf{z}) + \text{derivatives}$$

ii.
$$\frac{1}{4\pi^2} \langle n | T\overline{T} | n \rangle = \langle n | T | n \rangle \langle n | T | n \rangle - \langle n | \Theta | n \rangle^2$$
 (factorization property)

where $\{|n\rangle\}_{n\in\mathbb{N}}$ is a basis of eigenstates of the energy and momentum operators.

Remarks:

- $T\overline{T}(\mathbf{z})$ is an irrelevant operator corresponding (in the $\mu \to 0$ limit) to $T\overline{T}(\mathbf{z}) = \lim_{\mathbf{z}' \to \mathbf{z}} T(\mathbf{z})\overline{T}(\mathbf{z}')$ in the CFT.
- global translational symmetry \implies the QFT lives either on an infinite plane or an infinitely long cylinder.
- in cartesian coordinates $T\overline{T}(\mathbf{x}) = -\pi^2 \det[\mathbf{T}^{\mu\nu}(\mathbf{x})]$ and $\langle n|\det[\mathbf{T}^{\mu\nu}]|n\rangle = \det[\langle n|\mathbf{T}^{\mu\nu}|n\rangle]$

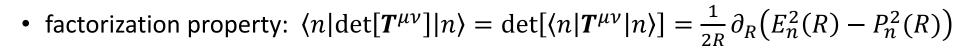
Toward the $T\overline{T}$ deformation

- d=2 QFT on an infinitely long cylinder with circumference $R \implies (x^1, x^2) \sim (x^1 + R, x^2)$
- Hilbert space defined at constant— x^2 slices:

•
$$E_n(R) = R\langle n|\mathcal{H}|n\rangle = -R\langle n|\mathbf{T}^{22}|n\rangle$$

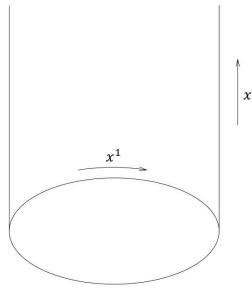
•
$$\partial_R E_n(R) = -\langle n|T^{11}|n\rangle$$

•
$$P_n(R) = R\langle n|\mathcal{P}|n\rangle = -\mathbb{i}R\langle n|\mathbf{T}^{12}|n\rangle = \frac{2\pi k_n}{R}$$
 (momentum quantization)



$$E_n(R, \delta \tau) = E_n(R) + \delta \tau R \langle n | \det[\mathbf{T}^{\mu \nu}] | n \rangle$$
 and $P_n(R, \delta \tau) = P_n(R)$

Remark: $E_n(R, \delta \tau)$ is associated to a new eigenstate $|n(\delta \tau)\rangle$



The $T\overline{T}$ deformation

- from infinitesimal to finite transformation: $\partial_{\tau} E_n(R,\tau) = R \langle n(\tau) | \det[\mathbf{T}^{\mu\nu}] | n(\tau) \rangle$
- assumption: the factorization property holds at finite $\tau \implies \langle n(\tau)|\det[T^{\mu\nu}]|n(\tau)\rangle = \det[\langle n(\tau)|T^{\mu\nu}|n(\tau)\rangle]$

$$\partial_{\tau} E_n(R,\tau) = \frac{1}{2} \partial_R \left(E_n^2(R,\tau) - P_n^2(R) \right)$$
 (inviscid inhomogeneous Burgers equation)

Remark: each level is deformed independently from the others \longrightarrow drop the subscript n

general solution by the method of characteristics:

$$\boxed{E^2(R,\tau) - P^2(R) = E^2(\mathcal{R}_0) - P^2(\mathcal{R}_0)} \quad \text{with} \quad \boxed{\mathcal{R}_0^2 = \left(R + \tau E(R,\tau)\right)^2 - \left(\tau P(R)\right)^2}$$

Example: zero momentum case (P=0): $E(R,\tau)=E(\mathcal{R}_0)$ with $\mathcal{R}_0=R+\tau E(R,\tau)$

the deformed theory lives on a cylinder with radius \mathcal{R}_0 , which depend on the energy and momentum!

Example: the $T\overline{T}$ deformation of a CFT

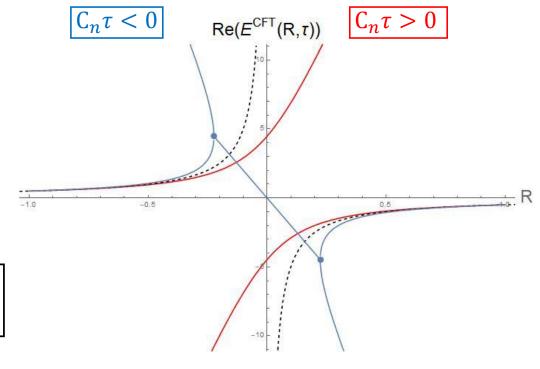
ullet Energy and momentum of a CFT with central charge c

$$E^{\text{CFT}}(R) = \frac{2\pi}{R} \left(h^{+} + h^{-} - \frac{c}{12} \right)$$

$$P^{\text{CFT}}(R) = \frac{2\pi}{R} (h^{+} - h^{-}) \text{ with } h^{\pm} = h_{0}^{\pm} + n^{\pm}$$

Energy levels of the deformed theory:

$$E^{\text{CFT}}(R,\tau) = -\frac{R}{2\tau} + \frac{R}{2\tau} \sqrt{1 + \frac{4\tau}{R} E^{\text{CFT}}(R) + \frac{4\tau^2}{R^2} (P^{\text{CFT}}(R))^2}$$



Remark: $E^{\text{CFT}}(R,\tau) + \frac{R}{2\tau}$ energy levels of a Nambu-Goto string in critical dimension (d=26)

• zero momentum states $(h^+ = h^- = h)$:

$$E_n^{\text{CFT}}(R,\tau) = -\frac{R}{2\tau} + \frac{R}{2\tau} \sqrt{1 + \frac{8\pi^2}{R^2} C_n \tau}$$
 with $C_n = 2(h_0 + n) - \frac{c}{12}$

The classical $T\overline{T}$ flow equations

How does the deformation affects the classical action?

The classical Hamiltonian density fulfils

$$\partial_{\tau} E_n(R,\tau) = R\langle n(\tau) | \det[\mathbf{T}^{\mu\nu}] | n(\tau) \rangle \implies \left[\partial_{\tau} \mathcal{H}(\mathbf{x},\tau) = -\det[\mathbf{T}^{\mu\nu}(\mathbf{x},\tau)] \right]$$

where $\mathcal{H}(\mathbf{x},\tau)$ depends on \mathbf{x} through $\{\phi(\mathbf{x}),\phi'(\mathbf{x}),\pi(\mathbf{x})\}$ and $\frac{d}{d\tau}\mathcal{H}(\mathbf{x},\tau)=\partial_{\tau}\mathcal{H}(\mathbf{x},\tau)$

What about the evolution of the Lagrangian density $\mathcal{L}(\mathbf{x}, \tau)$?

- $\pi = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} \rightarrow \dot{\phi}(\mathbf{x}, \tau)$ depends on \mathbf{x} through $\{\phi(\mathbf{x}), \phi'(\mathbf{x}), \pi(\mathbf{x})\}$ and explicitly on τ
- $\mathcal{L}(\mathbf{x},\tau)$ depends on \mathbf{x} through $\left\{\phi(\mathbf{x}),\phi'(\mathbf{x}),\dot{\phi}(\mathbf{x},\tau)\right\}$ and $\frac{d}{d\tau}\mathcal{L}(\mathbf{x},\tau)=\partial_{\tau}\mathcal{L}(\mathbf{x},\tau)+\left(\partial_{\tau}\dot{\phi}(\mathbf{x},\tau)\right)\frac{\partial\mathcal{L}}{\partial\dot{\phi}}$

•
$$\mathcal{H} = \pi \dot{\phi} - \mathcal{L} \rightarrow \partial_{\tau} \mathcal{H}(\mathbf{x}, \tau) = -\partial_{\tau} \mathcal{L}(\mathbf{x}, \tau) \implies \left[\partial_{\tau} \mathcal{L}(\mathbf{x}, \tau) = \det[\mathbf{T}^{\mu\nu}(\mathbf{x}, \tau)]\right]$$

The action fulfils $\left|\frac{d}{d\tau}\mathcal{A}(\tau) = \int d\mathbf{x} \det[\mathbf{T}^{\mu\nu}(\mathbf{x},\tau)]\right|$ and $\det[\mathbf{T}^{\mu\nu}(\mathbf{x},\tau)]$ is the perturbing operator.

Solving the flow equation

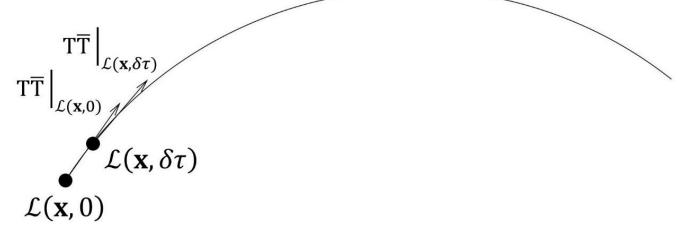
How to solve the equation $\partial_{\tau} \mathcal{L}(\mathbf{x}, \tau) = -\det[\mathbf{T}^{\mu\nu}(\mathbf{x}, \tau)]$ for $\mathcal{L}(\mathbf{x}, \tau)$?

- geometrically $\det[T^{\mu\nu}(\mathbf{x},\tau)]$ is the tangent vector to the curve $\mathcal{L}(\mathbf{x},\tau)$ as τ varies
- $T^{\mu\nu}(\mathbf{x},\tau)$ depends on \mathbf{x} through $\mathcal{L}(\mathbf{x},\tau)$, e.g. $T^{\mu\nu}=\frac{\partial\mathcal{L}}{\partial_{\mu}\phi}\partial^{\nu}\phi-\delta^{\mu\nu}\mathcal{L}$ for a scalar theory

Strategy: expand $\mathcal{L}(\mathbf{x}, \tau)$ around $\tau = 0$: $\mathcal{L}(\mathbf{x}, \tau) = \mathcal{L}^{(0)}(\mathbf{x}) + \sum_{n \geq 1} \mathcal{L}^{(n)}(\mathbf{x}) \tau^n$

- $\mathcal{L}^{(0)}(\mathbf{x}) = \mathcal{L}(\mathbf{x},0)$ is the original Lagrangian.
- $\mathcal{L}^{(1)}(\mathbf{x}) = -\det[\mathbf{T}^{\mu\nu}(\mathbf{x}, 0)]$

Reconstruct $\mathcal{L}(\mathbf{x}, \tau)$ order by order in τ



Example: $T\overline{T}$ —deformed Lagrangians

• Free scalar theory: $\mathcal{L}(\mathbf{x}) = \frac{1}{4} \delta^{\mu\nu} \partial_{\mu} \underline{\phi} \cdot \partial_{\nu} \underline{\phi}$ with $\underline{\phi} = (\phi_1, ..., \phi_N)$

$$\left| \mathcal{L}(\mathbf{x}, \tau) = \frac{1}{2\tau} \left(-1 + \sqrt{\det[\delta_{\mu\nu} + \tau h_{\mu\nu}]} \right) \right| \quad \text{with} \quad h_{\mu\nu} = \partial_{\mu}\underline{\phi} \cdot \partial_{\nu}\underline{\phi}$$

Remark: $\mathcal{L}(\mathbf{x},\tau) + \frac{1}{2\tau} = \frac{1}{2\alpha'} \sqrt{\det \left[\eta_{\alpha\beta} \partial_{\mu} X^{\alpha} \partial_{\nu} X^{\beta} \right]}$ is the Nambu Goto Lagrangian in d=(N+2) in static gauge $\begin{cases} X^{\mu} = x^{\mu} &, & \mu=1,2 \\ X^{i+2} = \sqrt{\tau} \phi_i &, & i=1,\dots,N \end{cases}$

• Interacting scalar theory: $\mathcal{L}^V(\mathbf{x}) = \frac{1}{4} \delta^{\mu\nu} \partial_{\mu} \underline{\phi} \cdot \partial_{\nu} \underline{\phi} + V(\underline{\phi})$

$$\left| \mathcal{L}^{V}(\mathbf{x}, \tau) = \frac{V}{1 - \tau V} + \frac{1}{2\tilde{\tau}} \left(-1 + \sqrt{\det[\delta_{\mu\nu} + \tilde{\tau}h_{\mu\nu}]} \right) \right| \text{ with } \tilde{\tau} = \tau (1 - \tau V)$$

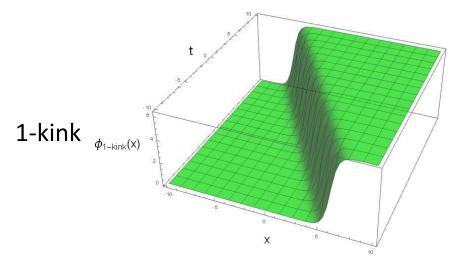
Part II integrable structure of the $T\overline{T}$ deformation

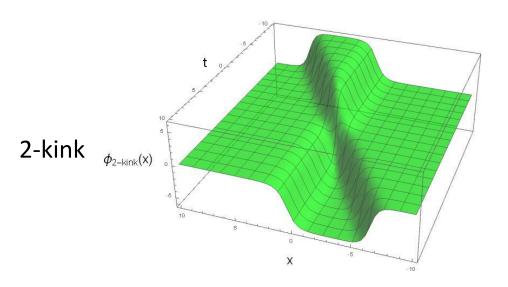
Study case: the sine-Gordon model

• sG equation first emerged as compatibility condition between the I and II fundamental forms of pseudo-spherical surfaces embedded in \mathbb{R}^3

$$\partial_z \partial_{\bar{z}} \phi = \sin(\phi)$$

- auto-Bäcklund transform: $\begin{cases} \partial_z \varphi = \partial_{\bar{z}} \phi + 2a \sin \left(\frac{1}{2} (\varphi + \phi)\right) \\ \partial_{\bar{z}} \varphi = -\partial_z \phi + \frac{2}{a} \sin \left(\frac{1}{2} (\varphi \phi)\right) \end{cases}$ with φ and ϕ solution to the sG equation
- field theoretical description: $\mathcal{L}_{sG}(\mathbf{z}) = \partial_z \phi \ \partial_{\bar{z}} \phi + 4 \sin^2 \left(\frac{\phi}{2}\right)$
- soliton solutions:





Classical integrability in sG model

Lax pair formulation

 $\mathfrak{su}(2)$ -valued connection $\Omega = L(\mathbf{z}, \lambda)dz + \overline{L}(\mathbf{z}, \lambda)d\overline{z}$ (λ spectral parameter) such that

$$d\Omega = \Omega \wedge \Omega \iff sG$$
 equation

- Conserved currents and charges are obtained from Ω using standard techniques
 - conserved currents $\left\{T_{k+1}(\mathbf{z}),\Theta_{k-1}(\mathbf{z}),\overline{T}_{k+1}(\mathbf{z}),\overline{\Theta}_{k-1}(\mathbf{z})\right\}_{k\geq 1}$ which fulfil the continuity equations

$$\partial_{\bar{z}} T_{k+1} = \partial_z \Theta_{k-1}$$
 and $\partial_z \overline{T}_{k+1} = \partial_{\bar{z}} \overline{\Theta}_{k-1}$

• conserved charges $\left\{I_k^{\pm}(R)\right\}_{k\geq 1}$ independent and in involution

$$I_k^+(R) = -\int \left[T_{k+1}(\mathbf{x}) + \Theta_{k-1}(\mathbf{x}) \right] dx^1$$
 and $I_k^-(R) = -\int \left[\overline{T}_{k+1}(\mathbf{x}) + \overline{\Theta}_{k-1}(\mathbf{x}) \right] dx^1$

Remark: the k=1 current is the stress-energy tensor and $E=I_1^+(R)+I_1^-(R)$, $P=I_1^+(R)-I_1^-(R)$

Quantum integrability in sG model

Exact S-matrix

• *n*-particle scattering is factorized into 2-particle scattering:



Yang-Baxter equation

• scattering is elastic:
$$S_{ij}^{kl}(\theta_1-\theta_2)=$$



- Castillejo-Dalitz-Dyson (CDD) ambiguity: $S_{ij}^{kl}(\theta)$ determined up to an overall factor $\Phi(\theta)$ such that
 - 1. $\Phi(\theta)\Phi(-\theta) = 1$ (unitarity)
 - 2. $\Phi(i\pi + \theta)\Phi(i\pi \theta) = 1$ (crossing symmetry)
- generic CDD factor: $\Phi(\theta) = \exp\{i \sum_{s \ge 1} \alpha_s \sinh(s\theta)\}$

• Quantum charges, i.e. eigenvalues of $\{\hat{I}_k^{\pm}(R)\}_{k\geq 1}$, are obtained using the *Thermodynamic Bethe Ansatz* (TBA) or the *non-Linear Integral Equation* (NLIE)

• **Example**: NLIE

• solve the NLIE for the unknown function $f_{\nu}(\theta)$ (counting function)

$$f_{\nu}(\theta) = \nu(R, \alpha_0 | \theta) - \int_{\mathcal{C}_1} d\theta' \, \mathcal{K}(\theta - \theta') \log \left(1 + e^{-f_{\nu}(\theta')} \right) + \int_{\mathcal{C}_2} d\theta' \mathcal{K}(\theta - \theta') \log \left(1 + e^{f_{\nu}(\theta')} \right)$$
 with

- $\mathcal{K}(\theta) = \frac{1}{2\pi i} \partial_{\theta} \log S(\theta)$ (kernel)
- $\nu(R, \alpha_0 | \theta) = 2\pi i \alpha_0 imR \sinh \theta$ (driving term)
- $\mathcal{C}_1=\mathbb{R}+\mathbb{i}0^+$ and $\mathcal{C}_2=\mathbb{R}-\mathbb{i}0^+$ for the ground state
- compute the quantum charges from $f_{\nu}(\theta)$

$$I_k^{\pm}(R) \propto \int\limits_{\mathcal{C}_1} \frac{d\theta}{2\pi i} e^{\pm k\theta} \log \left(1 + e^{-f_{\nu}(\theta')}\right) - \int\limits_{\mathcal{C}_2} \frac{d\theta}{2\pi i} e^{\pm k\theta} \log \left(1 + e^{f_{\nu}(\theta')}\right)$$

$T\overline{T}$ deformation as a CDD deformation

<u>Proposition</u>: the $T\overline{T}$ —deformed sG model is obtained through a CDD deformation of the S-matrix

$$S(\theta, \tau) = S(\theta) \exp\{i \tau m^2 \sinh(\theta)\}$$

Recall the general CDD factor $\Phi(\theta) = \exp\left\{ i \sum_{s \ge 1} \alpha_s \sinh(s\theta) \right\}$

To prove it, use the NLIE formalism

- The transformation $S(\theta) \to S(\theta, \tau)$ affects only $\mathcal{K}(\theta)$: $\mathcal{K}(\theta \theta') \to \mathcal{K}(\theta \theta') + \tau \frac{m^2}{2\pi} \cosh(\theta \theta')$
- The additional term $au rac{m^2}{2\pi} \cosh(heta heta')$ can be reabsorbed as

$$\nu(R,\alpha_0|\theta) \rightarrow \nu(\mathcal{R}_0,\alpha_0|\theta-\theta_0) \text{ with } \mathcal{R}_0\cosh\theta_0=R+\tau E(R,\tau) \text{ and } \mathcal{R}_0\sinh\theta_0=\tau P(R)$$

• The deformed energy and momentum fulfil

$$\mathcal{R}_0^2 = \left(R + \tau E(R, \tau)\right)^2 - \left(\tau P(R)\right)^2$$

$T\overline{T}$ deformation as a coordinate transformation

- Lagrangian of $T\overline{T}$ —deformed sG: $\mathcal{L}_{sG}(\mathbf{z},\tau) = \frac{V_{sG}}{1-\tau V_{sG}} + \frac{1}{2\tilde{\tau}} \left(-1 + \sqrt{1+4\tilde{\tau}\partial_z\phi\partial_{\bar{z}}\phi}\right)$
- there exists an $\mathfrak{su}(2)$ -valued connection $\Omega = L(\mathbf{z}, \lambda, \tau)dz + \overline{L}(\mathbf{z}, \lambda, \tau)d\overline{z}$ such that

$$d\Omega = \Omega \wedge \Omega \iff T\overline{T}$$
 -deformed sG EoM

• there exists a coordinate transformation $\Psi_{\tau} \colon \mathbb{C} \to \mathbb{C} : \mathbf{z} \to \mathbf{w} = \Psi_{\tau}(\mathbf{z})$ such that

$$\Omega = L(\mathbf{z}, \lambda, \tau) dz + \overline{L}(\mathbf{z}, \lambda, \tau) d\overline{z} = L(\mathbf{w}, \lambda) dw + \overline{L}(\mathbf{w}, \lambda) d\overline{w}$$

• the Jacobian of $\Psi_{ au}$ is

$$\mathcal{J}^{-1}(\mathbf{w}) = \begin{pmatrix} 1 + 2\tau \, \Theta(\mathbf{w}) & 2\tau \, \mathrm{T}(\mathbf{w}) \\ 2\tau \, \overline{\mathrm{T}}(\mathbf{w}) & 1 + 2\tau \, \Theta(\mathbf{w}) \end{pmatrix} \text{ and } \mathcal{J}(\mathbf{z}) = \begin{pmatrix} 1 - 2\tau \, \Theta(\mathbf{z}, \tau) & -2\tau \, \mathrm{T}(\mathbf{z}, \tau) \\ -2\tau \, \overline{\mathrm{T}}(\mathbf{z}, \tau) & 1 - 2\tau \, \Theta(\mathbf{z}, \tau) \end{pmatrix}$$

Remarks:

- the explicit expression of $\mathbf{w} = \mathbf{\Psi}_{\tau}(\mathbf{z})$ depend on the solution
- the hessian of Ψ_{τ} is symmetric on shell: $\partial_{\overline{w}}(\partial_w z) = \partial_w(\partial_{\overline{w}} z) \iff \partial_{\overline{w}}\Theta(\mathbf{w}) = \partial_w \overline{T}(\mathbf{w})$

The coordinate transformation

The coordinate transformation is valid for any theory

EoMs of the original theory \rightleftharpoons EoMs of the $T\overline{T}$ —deformed theory

• In cartesian coordinates $\Psi_{ au}\colon \mathbb{R}^2 o \mathbb{R}^2: \mathbf{x} o \mathbf{y} = \Psi_{ au}(\mathbf{x})$

$$(\mathcal{J}^{-1})^{\mu}_{\nu} = \frac{\partial x^{\mu}}{\partial y^{\nu}} = \delta^{\mu}_{\nu} - \tau g^{\mu\delta} \epsilon_{\delta\rho} \epsilon_{\sigma\nu} \mathbf{T}^{\rho\sigma}(\mathbf{y}) \quad \text{and} \quad \mathcal{I}^{\mu}_{\nu} = \frac{\partial y^{\mu}}{\partial x^{\nu}} = \delta^{\mu}_{\nu} + \tau g^{\mu\delta} \epsilon_{\delta\rho} \epsilon_{\sigma\nu} \mathbf{T}^{\rho\sigma}(\mathbf{x}, \tau)$$

- It provides an alternative definition of the $T\overline{T}$ deformation at classical level
 - construct the $T\overline{T}$ —deformed classical action $\int \mathcal{L}(\mathbf{x},\tau) \ d\mathbf{x} = \int \left(\mathcal{L}(\mathbf{y}) \tau \det[T^{\mu\nu}(\mathbf{y})]\right) \ d\mathbf{y}$
 - construct the local currents and charges of a $T\overline{T}$ —deformed integrable theory

$$\mathfrak{J}_k = \mathsf{T}_{k+1}(\mathbf{w}) \, dw + \Theta_{k-1}(\mathbf{w}) \, d\overline{w} = \mathsf{T}_{k+1}(\mathbf{z},\tau) \, dz + \Theta_{k-1}(\mathbf{z},\tau) \, d\overline{z} \quad \text{with} \quad \mathsf{d}\mathfrak{J}_k = 0$$

• construct $T\overline{T}$ —deformed classical solutions

Deformed classical solutions

- Relation between deformed and original solutions: $\phi_0(\mathbf{x}, \tau) = \phi_0(\mathbf{y})$
- Strategy:
 - start from $\phi_0(\mathbf{y})$ and integrate

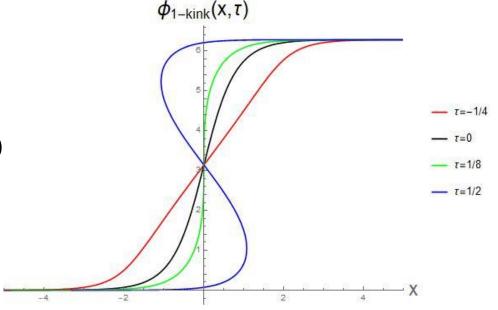
$$\frac{\partial x^{\mu}}{\partial y^{\nu}} = \delta^{\mu}_{\nu} - \tau g^{\mu\delta} \epsilon_{\delta\rho} \epsilon_{\sigma\nu} T^{\rho\sigma}(\mathbf{y})|_{\phi = \phi_0} \longrightarrow \mathbf{x} = \mathbf{\Psi}_{\tau}^{-1}(\mathbf{y})$$

- invert the latter relation as $\mathbf{y} = \mathbf{\Psi}_{\tau} \left(\mathbf{x} \right)$
- Simple example: 1-kink solution in sG

$$2(y^1 - vy^2) = \log \tan \frac{\phi(\mathbf{y})}{4} \longrightarrow 2(x^1 - vx^2) = \log \tan \frac{\phi(\mathbf{x}, \tau)}{4} + 8\tau \cos \frac{\phi(\mathbf{x}, \tau)}{2}$$

Emergence of shock-wave phenomena in the deformed solutions

Remark: not all the solutions can be obtained analytically



Part III generalizations and further directions

Other deformations

So far we learned that the $T\overline{T}$ deformation is equivalent to

- a coordinate transformation at classical level (true for any theory);
- a CDD deformation at quantum level (true at least for integrable theories).

<u>Idea</u>: use alternatively these tools to generate new deformations

• **Example 1**:

- coordinate transformations involving local conserved currents of an integrable theory: $T^{\mu\nu} \to T^{\mu\nu}_s(\mathbf{y})$ where the components of $T^{\mu\nu}_s$ are related to $\{T_{s+1}(\mathbf{z}), \Theta_{s-1}(\mathbf{z}), \overline{T}_{s+1}(\mathbf{z}), \overline{\Theta}_{s-1}(\mathbf{z})\}$
- non-relativistic deformation of the S-matrix: $S^{(s)}(\theta, \theta', \tau) = S(\theta \theta') \exp\{i \tau m \gamma_s \sinh(\theta s \theta')\}$
- not able to identify the perturbing operator

<u>Remark</u>: $J\overline{T}$ and $T\overline{J}$ deformations are found as particular cases.

• **Example 2**:

- CDD deformation of the S-matrix: $S^{(s)}(\theta \theta', \tau) = S(\theta \theta') \exp\{i \tau m \gamma_s \sinh(s\theta s\theta')\}$
- apparently not related to a coordinates transformation
- related to the operator $\lim_{\mathbf{z}' \to \mathbf{z}} T_{s+1}(\mathbf{z}) \overline{T}_{s+1}(\mathbf{z}') \Theta_{s-1}(\mathbf{z}) \Theta_{s-1}(\mathbf{z}') = \frac{1}{4\pi^2} X_s(\mathbf{z}) + \text{derivatives}$ and $X_1(\mathbf{z}) \equiv T\overline{T}(\mathbf{z})$

Other generalizations:

- supersymmetric extensions of the $T\overline{T}$ deformation; (Sfondrini et al., Sethi et al., Freedman et al.)
- combinations of various deformations $(T\overline{T} + J\overline{T} + \cdots)$; (Frolov (2019))

Questions:

- what about the UV behaviour of these models?
- is there a gravitational interpretation of these deformations?

Further directions

The $T\overline{T}$ deformation and its generalizations apply to d=2 QFTs. Are there consistent extensions to $d\neq 2$?

- *d* > 2:
 - proposals inspired by Holography (Taylor (2018), Hartman et al. (2018))
 - a curious fact: d=4 Maxwell Born-Infeld Lagrangian as deformation of d=4 Maxwell Lagrangian induced by $\sqrt{\det T}$

$$\partial_{\tau} \mathcal{L}_{\mathrm{MBI}} = \sqrt{\det \boldsymbol{T}_{\mathrm{MBI}}^{\mu\nu}} \quad \text{ with } \quad \mathcal{L}_{\mathrm{MBI}} = \frac{1}{2\tau} \left(-1 + \sqrt{\det \left(\delta^{\mu\nu} + \sqrt{2\tau} F^{\mu\nu} \right)} \right)$$

- d = 1:
 - "TT" deformation of quantum mechanical systems (Gross et al. (2019))
 - deformations of integrable lattice models, e.g. quantum spin chains (Sfondrini et al. (2019), Pozsgay et al. (2019))

Question: does it provide a discretized version of the $T\overline{T}$ deformation?

Thank you for the attention!