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Motivation
Why use scattering amplitude to study trace anomalies 

along renormalization group (RG) flow? 



Quantum Field Theories (QFTs) can be non-perturbatively defined as 
a renormalization group flow between UV fixed point and IR fixed 
point which are assumed to enjoy conformal symmetry. 

UV  CFT

IR  CFT 

> QFT  = RG flow

λ1

λ2

Energy

To specify a particular QFT it is sufficient to provide the UV CFT, and 

(1) the relevant deformation triggering the RG flow in the explicit conformal symmetry 
breaking case, 

OR
(2) the VEV of the scalar primary operator in the spontaneous symmetry breaking case.



We can non-perturbatively study:


 the UV fixed point using conformal bootstrap program, 

(to put bounds on the allowed values of scaling dimensions, OPE coefficients,…)


and


 the scattering amplitudes of light d.o.f. near IR fixed point using

 S-matrix bootstrap program. 


(to bound ratios of masses of stable particles, coupling constants, EFT parameters,…)

The parameters 
are different

UV  CFT + Relevant deformation

IR  CFT 

>Strongly coupled 
RG flow



UV  CFT + Relevant deformation

IR  CFT 

>Strongly coupled 
RG flow

QFT spectrum or scattering amplitudes at 
any energy scale can be computed using 
various numerical methods like lattice field 
theory, Hamiltonian truncation, tensor 
networks, etc [requires introduction of UV 
cut-off and costly extrapolation to 
continuum limit]

We can non-perturbatively study:


 the UV fixed point using conformal bootstrap program, 

(to put bounds on the allowed values of scaling dimensions, OPE coefficients,…)


and


 the scattering amplitudes of light d.o.f. near IR fixed point using

 S-matrix bootstrap program. 


(to bound ratios of masses of stable particles, coupling constants, EFT parameters,…)

The parameters 
are different

Very Hard



Questions we like to ask:  Can we identify a set of observables which are 
determined by the UV CFT and IR CFT data, and do not depend on the details 
of the RG flow (``protected”)?  


Then the CFT datas can be used as parameters of both the 
conformal and S-matrix bootstrap to derive non-perturbative 
bounds.



(UV  CFT + Relevant deformation) 
coupled to background fields  {Ji(x)}

IR  CFT coupled to background fields  
+ EFT of background fields {Ji(x)}

>Strongly coupled 
RG flow Integrate out 

massive d.o.f.

J1(k1)

J4(k4)

J3(k3)

J2(k2)

= protected in  low energy? 

Questions we like to ask:  Can we identify a set of observables which are 
determined by the UV CFT and IR CFT data, and do not depend on the details 
of the RG flow (``protected”)?  


Then the CFT datas can be used as parameters of both the 
conformal and S-matrix bootstrap to derive non-perturbative 
bounds.



The answer we provide:  Introduce two background fields  dilaton and 
graviton. 


Dilaton compensate explicit conformal symmetry breaking near UV (or the 
Goldstone boson of SSB)


Graviton is the quanta of background metric (after providing dynamics) 
introduced such that the QFT in the curved background in classically Weyl 
invariant.

→
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Notice that all the vertices above, except for the second one, are contracted with polarizations.

This stresses the fact that for the computation of V µ1⌫1
(h'') we do not use (2.10). Below we

provide the diagrammatic notation for all the vertices (2.11).

V(''')(k1, k2, k3) =

k1

k2

k3

,

V µ1⌫1
(h'')(k1, k2, k3) = µ1⌫1

k1

k2

k3
,

V(hh')(k1, k2, k3; "1, "2) =

"1

"2

k1

k2

k3

V('''')(k1, k2, k3, k4) = k1

k2

k3

k4

V(hh'')(k1, k2, k3, k4; "1, "2) =

"1

"2

k1

k2

k3

k4

(2.12)

2.2 Computation of vertices

In this section we will compute the vertices (2.11) using the e↵ective action (1.16). The main

results of this section are given by equations (2.14), (2.16), (2.18), (2.22) and (2.26).

For the various vertices below, we choose restricted background configurations for the

metric and dilaton given by equations (2.6) and (2.7). This serves two purposes. First, one

obtains simpler formulas. Second, and more importantly, if there is a nontrivial infrared

CFT then it also contributes to the vertices we study. Our choice of the background fields

guarantees that the infrared CFT does not a↵ect the way the trace anomalies appear. This

is demonstrated in detail in appendix B.
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→ Δa × (momenta)4 , → (Δc − Δa) × (momenta)4

Δa ≡ aUV − aIR and Δc ≡ cUV − cIR

The ‘ ’ and ‘ ’ are trace/Weyl anomaly coefficients of CFT determined in terms 
of OPE coefficients of stress tensor correlation function.  

a c



Applications in 4d

Notice that all the vertices above, except for the second one, are contracted with polarizations.

This stresses the fact that for the computation of V µ1⌫1
(h'') we do not use (2.10). Below we

provide the diagrammatic notation for all the vertices (2.11).

V(''')(k1, k2, k3) =

k1

k2

k3

,

V µ1⌫1
(h'')(k1, k2, k3) = µ1⌫1

k1

k2

k3
,

V(hh')(k1, k2, k3; "1, "2) =

"1

"2

k1

k2

k3

V('''')(k1, k2, k3, k4) = k1

k2

k3

k4

V(hh'')(k1, k2, k3, k4; "1, "2) =

"1

"2

k1

k2

k3

k4

(2.12)

2.2 Computation of vertices

In this section we will compute the vertices (2.11) using the e↵ective action (1.16). The main

results of this section are given by equations (2.14), (2.16), (2.18), (2.22) and (2.26).

For the various vertices below, we choose restricted background configurations for the

metric and dilaton given by equations (2.6) and (2.7). This serves two purposes. First, one

obtains simpler formulas. Second, and more importantly, if there is a nontrivial infrared

CFT then it also contributes to the vertices we study. Our choice of the background fields

guarantees that the infrared CFT does not a↵ect the way the trace anomalies appear. This

is demonstrated in detail in appendix B.

– 12 –

Using unitarity proved theorem i.e. 
 for any RG flow


Komargodski & Schwimmer

a−
aUV ≥ aIR

Derived lower bound on  in the 
space of CFTs which can flow to a 
gapped QFT


Karateev, Marucha, Penedones, B.S. 

aUV
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Shown how  is related to 
the massive spinning states of the QFT


Karateev, Komargodski, Penedones, B.S. 

(Δc − Δa)



Outline of the seminar

Trace anomalies in CFT


Proposal of background field method to probe trace 
anomalies along RG flow


Testing the proposal in QFTs:  free massive scalar and 
Dirac fermion, weakly relevant flow


Dilaton-Dilaton and Graviton-Dilaton scattering 
amplitudes


S-matrix Bootstrap applications


Outlook for future



Trace anomalies in CFT 

Based on:
Capper, Duff and Isham (1974-76)
Osborn and Petkos (1993)



CFT in curved spacetime and trace anomaly

Invariant under Weyl transformationCFT conformally coupled to background geometry

Weyl transformations: gμν(x) → e2σ(x)gμν(x) 𝒪μ1...(x) → e−Δ𝒪σ(x)𝒪μ1...(x)

Local primary operatorParameter of Weyl transformation 

For a Weyl invariant theory, classically:    ,  where    Tμ
μ(x) = 0 Tμ

μ(x) ≡
1
−g

δW Ag

δσ(x)

curved space 
CFT action 
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Weyl transformations: gμν(x) → e2σ(x)gμν(x) 𝒪μ1...(x) → e−Δ𝒪σ(x)𝒪μ1...(x)

Local primary operatorParameter of Weyl transformation 

For a Weyl invariant theory, classically:    ,  where    Tμ
μ(x) = 0 Tμ

μ(x) ≡
1
−g

δW Ag

δσ(x)

curved space 
CFT action 

Connected functional

eiW[gμν] = Z[gμν] ≡ ∫ [dϕ]g eiAg[ϕ,gμν]

δWW[gμν] = ∫ d4x −gσ(x) ⟨0 |Tμ
μ(x) |0⟩g = ∫ d4x −gσ(x)(−a × E4 + c × 𝒲2)

Euler density Weyl tensor squareTrace anomaly



a ≡
π4

64 × 90 (9𝔸 − 2𝔹 − 10ℂ) c ≡
π4

64 × 30 (14𝔸 − 2𝔹 − 5ℂ) =
π2

64 × 10
CT

Two and three point correlators:

—     for   are known tensor structures.TI I = 0,1,2,3

  and    anomalies in terms of central charge and OPE coefficients :a c

⟨0 |Tμν(x1)Tρσ(x2) |0⟩ =
CT

x8
12

× Tμν;ρσ
0

⟨0 |Tμν(x1)Tρσ(x2)Tαβ(x3) |0⟩ =
1

x4
12x4

23x4
31

(𝔸Tμν;ρσ;αβ
1 + 𝔹Tμν;ρσ;αβ

2 + ℂTμν;ρσ;αβ
3 )

Central charge

OPE coefficients

‘ ’ and ‘ ’ as OPE coefficientsa c

∂μTμν(x) = 0 Tμ
μ(x) = 0In flat background:



Proposal of background field method to 
probe trace anomalies along RG flow

Based on:
Fradkin and Tseytlin (1984)
Schwimmer and  Theisen (2010)
Komargodski and Schwimmer (2011)
Luty, Polchinski and  Rattazzi (2012)
Karateev, Komargodski, Penedones and B.S. 



Dilaton as a conformal compensator

AQFT[ϕ, gμν] = AUV CFT[ϕ, gμν] + Adeformation(Mi)

Weyl invariant

Adeformation(Mi) = ∑
i

∫ d4x −g (λiM
4−Δi
i 𝒪i(x))

Weyl symmetry is explicitly broken due to  which 
triggers the RG flow


      

Adeformation

Tμ
μ(x) = ∑

i

λi(4 − Δi)M
4−Δi
i 𝒪i(x)

Δi < 4



Restore the Weyl symmetry by introducing a compensator field 
 and scaling all the mass parameters  Ω(x) Mi → Mi(x) ≡ Ω(x)Mi

Acompensated
QFT [ϕ, gμν, Ω] = AUV CFT[ϕ, gμν] + Acompensated

deformation (Mi)

Acompensated
deformation

(Mi) = ∑
i

∫ d4x −g λi (MiΩ(x))4−Δi 𝒪i(x)

Under Weyl transformation     .Ω(x) → e−σ(x)Ω(x)

, where   is the dilaton field under Weyl 
transformation : 
Ω(x) = e−τ(x) τ(x)

τ(x) → τ(x) + σ(x)

source for  Tμ
μ(x)

Dilaton as a conformal compensator



Trace anomaly in compensated QFT

Connected functional

eiW[gμν,Ω] = ∫ [dϕ]g e
Acompensated
QFT [ϕ,gμν,Ω]

δWW[gμν, Ω] = ∫ d4x −gσ(x)(−aUV × E4 + cUV × 𝒲2 + 𝒜coupling space)

𝒜coupling space = ∑
i

Δi ∈ ℤ+

cUV
i M8−2Δi

i Ω(x)4−Δi( □Δi−2 + …) Ω(x)4−Δi

Extra scale anomaly for integer dimension 
operators, won’t be discussed in this talk



Trace anomaly matching and graviton-dilaton EFT

̂g μν(x) ≡ e−2τ(x)gμν(x) ̂O Δ(x) ≡ eΔτ(x)O(x)

AIR[Φ, gμν, τ] = AIR CFT[Φ, gμν] + AEFT[τ, gμν] + ∑
1≤Δ≤2

λΔ ∫ d4x − ̂g M2−ΔR( ̂g ) ̂O Δ(x)

+ irrelevant terms

δW AEFT[gμν, τ] = ∫ d4x −gσ(x)(−Δa × E4 + Δc × 𝒲2)

δWW[gμν, Ω] = ∫ d4x −gσ(x)(−aUV × E4 + cUV × 𝒲2)

Δa ≡ aUV − aIR and Δc ≡ cUV − cIR



Aa[τ, gμν] = ∫ d4x −g(τE4 + 4 (Rμν −
1
2

gμνR) ∂μτ∂ντ + 2(∂τ)4 − 4(∂τ)2 □ τ)
Ac[τ, gμν] = ∫ d4x −g τ 𝒲2

Ainvariant[ ̂g μν] = ∫ d4x − ̂g (M4λ + M2r0 ̂R + r1 ̂R 2 + r2 ̂W 2 + r3 ̂E 4)

Trace anomaly matching and graviton-dilaton EFT

̂g μν(x) ≡ e−2τ(x)gμν(x) ̂O Δ(x) ≡ eΔτ(x)O(x)

AIR[Φ, gμν, τ] = AIR CFT[Φ, gμν] + AEFT[τ, gμν] + ∑
1≤Δ≤2

λΔ ∫ d4x − ̂g M2−ΔR( ̂g ) ̂O Δ(x)

+ irrelevant terms

AEFT[τ, gμν] = − Δa × Aa[τ, gμν] + Δc × Ac[τ, gμν] + Ainvariant[ ̂g μν]
Solution



e−τ(x) ≡ 1 −
φ(x)

2f

dilaton field

graviton field (traceless and transverse)

(2π)4δ(4)(p1 + … + pm + q1 + … + qn) × Vμ1ν1,…,μmνm
(h…hφ…φ) (p1, …, pm, q1, …, qn)

≡
i δm+nAEFT[τ, gμν]

δhμ1ν1
(p1)…δhμmνm

(pm)δφ(q1)…δφ(qn)
h,φ=0

graviton-dilation vertex

Vertices to probe anomaly coefficients

gμν(x) ≡ ημν + 2κ hμν(x)

These restrictions can be chosen without loss of generality for the following reason: dif-

feomorphism invariance of the e↵ective action AEFT[⌦, gµ⌫ ] implies that under infinitesimal

coordinate transformations �xµ = �µ(x), the dilaton and the metric transform as

�' = ��⇢@⇢' (3.8)

�hµ⌫ = �
1

2
(@µ�⌫ + @⌫�µ)� (h⇢⌫@µ�

⇢ + hµ⇢@⌫�
⇢ + �⇢@⇢hµ⌫) , (3.9)

and together with (2.2), this allows us to remove the restrictions above.

For our purposes we will need to consider the following five vertices

V('''), V µ1⌫1
(h''), V(hh'), V(''''), V(hh''). (3.10)

Notice that all the vertices above, except for the second one, are contracted with polarizations.

This stresses the fact that for the computation of V µ1⌫1
(h'') we do not use (3.7). Below we provide

the diagrammatic notation for all the vertices (3.10).

V(''')(k1, k2, k3) =

k1

k2

k3

V µ1⌫1
(h'')(k1, k2, k3) = µ1⌫1

k1

k2

k3

V(hh')(k1, k2, k3; "1, "2) =

"1

"2

k1

k2

k3

V('''')(k1, k2, k3, k4) = k1

k2

k3

k4
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V(hh'')(k1, k2, k3, k4; "1, "2) =

"1

"2

k1

k2

k3

k4

3.2 Computations of Vertices

In this section we will compute the vertices (3.10) using the e↵ective action (2.14). The main

results of this section are given by equations (3.12), (3.14), (3.17), (3.22) and (3.26).

In what follows we will write some vertices with additional constraints such as @2'(x) = 0

and @2hµ⌫(x) = 0. When this is done we carefully emphasise this in the text. At this point

these constraints are not the equations of motion but simply a particular choice for the

background field configuration which simplifies the expressions.

3.2.1 Three-Point Vertices

Let us start by writing the part of the e↵ective action (2.14) which contains three dilaton

fields ' and four derivatives

AEFT = �a

p
2

f3

Z
d4x (@')2@2'+ r1

18
p
2

f3

Z
d4x '(@2')2 + . . . . (3.11)

We obtain

V(''')(k1, k2, k3) =
i
p
2

f3

✓
�a

⇣�
k21
�2

+
�
k22
�2

+
�
k23
�2⌘

+ 2(18r1 ��a)
�
k21k

2
2 + k22k

2
3 + k23k

2
1

�
+ . . .

◆
, (3.12)

where k3 = �k1 � k2. The ellipsis denote terms of di↵erent powers of momenta coming from

other derivative terms in the e↵ective action. If we impose @2'(x) = 0 the V(''') vertex

vanishes.

Now consider the four derivative part of the EFT action which contains two dilatons and

one graviton. It reads as

AEFT =
2�a

f2

Z
d4x

✓
@2hµ⌫ �

1

2
@2h⌘µ⌫

◆
@µ'@⌫'

+
r1

f2

Z
d4x

�
18h@2'@2'� 72hµ⌫@µ@⌫'@

2'� 6@2h'@2'
�
. (3.13)

From the above action the 2-dilaton-1-graviton EFT vertex becomes

V µ⌫
(h'')(k1, k2, k3) =

i

f2

�
6M4�⌘µ⌫ +M2r0

�
⌘µ⌫(k21 + 3k22 + 3k23)� 6(kµ2 k

⌫
2 + kµ3 k

⌫
3 )
��

+
2i�a

f2
k21 (kµ2 k

⌫
3 + k⌫2k

µ
3 � ⌘µ⌫k2.k3)

+
ir1

f2

�
36⌘µ⌫k22k

2
3 � 6⌘µ⌫k21(k

2
2 + k23)� 72(kµ2 k

⌫
2k

2
3 + kµ3 k

⌫
3k

2
2)
�
.

(3.14)
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These restrictions can be chosen without loss of generality for the following reason: dif-

feomorphism invariance of the e↵ective action AEFT[⌦, gµ⌫ ] implies that under infinitesimal

coordinate transformations �xµ = �µ(x), the dilaton and the metric transform as

�' = ��⇢@⇢' (3.8)

�hµ⌫ = �
1

2
(@µ�⌫ + @⌫�µ)� (h⇢⌫@µ�

⇢ + hµ⇢@⌫�
⇢ + �⇢@⇢hµ⌫) , (3.9)

and together with (2.2), this allows us to remove the restrictions above.

For our purposes we will need to consider the following five vertices

V('''), V µ1⌫1
(h''), V(hh'), V(''''), V(hh''). (3.10)

Notice that all the vertices above, except for the second one, are contracted with polarizations.

This stresses the fact that for the computation of V µ1⌫1
(h'') we do not use (3.7). Below we provide

the diagrammatic notation for all the vertices (3.10).

V(''')(k1, k2, k3) =

k1

k2

k3

V µ1⌫1
(h'')(k1, k2, k3) = µ1⌫1

k1

k2

k3

V(hh')(k1, k2, k3; "1, "2) =

"1

"2

k1

k2

k3

V('''')(k1, k2, k3, k4) = k1

k2

k3

k4
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Here for completeness we have added terms with zero and two powers of momenta coming from

the terms in the Lagrangian with zero and two derivatives. Due to momentum conservation

we have k3 = �k1 � k2 as before. Here we do not impose on-shell conditions on the dilaton

or the metric since this particular vertex will be useful when these are o↵-shell. By using

momentum conservation and the harmonic gauge the four-momentum part of the equation

(3.14) can be rewritten as

V µ⌫
(h'')(k1, k2, k3) =

i

f2
⌘µ⌫

h
� 12r1k

2
1k1.k2 + (2�a� 12r1)k

2
1k

2
2 + 36r1(k

2
2)

2
� 6r1(k

2
1)

2
i

�
i

f2
kµ2 k

⌫
2

h
(4�a+ 72r1)k

2
1 + 144r1(k

2
2 + k1.k2)

i
. (3.15)

In order to implement harmonic gauge (3.6), one replaces terms of the form kµ1A
⌫ or k⌫1A

µ

by 1
2(k1.A)⌘

µ⌫ in (3.14) to bring it to the above form. The above expression of graviton-

dilaton-dilaton vertex is closely related to the ANEC construction of [26]. It turns out that

the projection operator (@k2u � @k3u)
2~@k2 · ~@k3 of [26], when applied to the vertex (3.15) after

setting k1 = �k2 � k3, yields only �a, hence it is consistent with the sum rule.

Let us now consider the part of the e↵ective action (2.14) which contains two gravitons

and one dilaton, and four derivatives. It reads as

AEFT =
2
p
2f

Z
d4x

⇣
2(2�a��c)'@2hµ⌫@

2hµ⌫

+ (��a+�c)' (4@⇢@⌫hµ�@
⇢@⌫hµ� + 4@⇢@⌫hµ�@

µ@�h⌫⇢ � 8@⇢@⌫hµ�@
µ@⇢h⌫�)

+ 12r1@
2'

�
4h↵�@2h↵� + 3@µh↵�@

µh↵� � 2@�hµ↵@↵hµ�
�⌘

. (3.16)

We obtain

V(hh')(k1, k2, k3; "1, "2) =

f1(k1, k2)⇥ ("1."2) + f2(k1, k2)⇥ (k1."2.k1)(k2."1.k2) + f3(k1, k2)⇥ (k1."2."1.k2), (3.17)

where the functions fi(k1, k2) read as

f1(k1, k2) =
4i2
p
2f

⇣
2(��a+�c+ 18r1)(k1.k2)

2 + (2�a��c+ 24r1)k
2
1k

2
2

+ 12r1(k
4
1 + k42) + 42r1(k1.k2)(k

2
1 + k22) + . . .

⌘
,

f2(k1, k2) =
8i2
p
2f

(��a+�c+ . . .) ,

f3(k1, k2) =
8i2
p
2f

�
2(�a��c� 6r1)(k1.k2)� 6r1(k

2
1 + k22) + . . .

�
.

(3.18)

We used k3 = �k1 � k2. Again the ellipsis denote the terms which are not contributing at

four powers of momenta. In the above we have used the following short-hand notation

("1."2) ⌘ "1µ⌫"
µ⌫
2 , (pi."j .pk) ⌘ piµ"

µ⌫
j pk⌫ , (pi."1."2.pj) ⌘ piµ"

µ⇢
1 "2⇢⌫p

⌫
j . (3.19)
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Here for completeness we have added terms with zero and two powers of momenta coming from
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We used k3 = �k1 � k2. Again the ellipsis denote the terms which are not contributing at

four powers of momenta. In the above we have used the following short-hand notation
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Vuu
(hφφ) related to Hartman-Mathys ANEC sum-rule



(ε1 . ε2) ≡ ε1μνε
μν
2

f1(k1, k2) =
4iκ2

2f (2(−Δa + Δc + 18r1)(k1 . k2)2 + (2Δa − Δc + 24r1)k2
1k2

2

f2(k1, k2) =
8iκ2

2f
(−Δa + Δc)

f3(k1, k2) =
8iκ2

2f
(2(Δa − Δc − 6r1)(k1 . k2) − 6r1(k2

1 + k2
2))

= f1(k1, k2) × (ε1 . ε2) + f2(k1, k2) × (k1 . ε2 . k1)(k2 . ε1 . k2) + f3(k1, k2) × (k1 . ε2 . ε1 . k2)

(ki . εj . kk) ≡ kiμεμν
j kkν

(ki . ε1 . ε2 . kj) ≡ kiμεμρ
1 ε2ρνkν

j

graviton-graviton-dilaton vertex

at four power in momenta: 

+12r1(k4
1 + k4

2) + 42r1(k1 . k2)(k2
1 + k2

2))



Testing the proposal in QFTs

Based on:
Cappeli and Latorre (1989)
Klebanov, Pufu and Safdi (2011)
Komargodski (2011)
Karateev, Komargodski, Penedones and B.S. 
Karateev and B.S. (to appear)



Example 1: Free massive scalar 

UV CFT

AQFT = ∫ d4x (−
1
2 (∂Φ(x))2 −

1
2

m2Φ(x)2)
deformation

empty
mass gap

energy 

0

UV CFT + deformation

IR CFT
m

aUV =
1

5760π2
, cUV =

3
5760π2

aIR = 0, cIR = 0



Example 1: Free massive scalar 

Acompensated
QFT [Φ, gμν, τ] = ∫ ddx −g( −

1
2

gμν∂μΦ∂νΦ −
d − 2

8(d − 1)
RΦ2 −

1
2

m2e−2τΦ2)
conformally coupled 
to background metric 

compensation of 
explicit breaking 

= +

f3(k1, k2) = −
iκ2

720 2π2f
(k2

1 + k2
2 + 6(k1 . k2))

f1(k1, k2) =
iκ2

1440 2π2f
(2(k2

1)2 + 2(k2
2)2 + 10(k1 . k2)2 + 7k1 . k2(k2

1 + k2
2) + 3k2

1 k2
2)

f2(k1, k2) = +
iκ2

360 2π2f Δa =
1

5760π2
, Δc = 3Δa, r1 =

Δa
6

Low energy expansion: 



Example II: Free massive Dirac fermion 

4.2.2 Graviton-Graviton-Dilaton Vertex

The vertex V(hh') is given by the sum of the following three diagrams

k1

k2

k3

`

`� k3

k3

k1

k2
`

`+ k2

`� k3

k3

k2

k1
`

`+ k1

`� k3

Let us denote these diagrams by U1, U2 and U3 respectively. Then

V(hh')(k1, k2, k3; "1, "2) = U1(k1, k2, k3; "1, "2) + U2(k1, k2, k3; "1, "2) + U3(k1, k2, k3; "1, "2).

(4.53)

Using Feynman’s rules the algebraic form of the first diagram becomes

U1 = �
2m
p
2f

"µ⌫(k1)"⇢�(k2)

Z
dd`

(2⇡)d
1

`2 +m2 � i✏

1

(`� k3)2 +m2 � i✏

Tr

h⇣
2⌘µ⇢⌘⌫�(/̀+mI)� 3

2
(⌘⌫⇢�µ`� + ⌘µ��⇢`⌫)

�
1

2
�↵(k1 � k2)↵⌘

µ⇢⌃⌫�
� �µ⌘⌫�(k1 + k2)↵⌃

↵⇢
� �⇢⌘⌫�(k1 + k2)↵⌃

↵µ

��⇢k⌫2⌃
µ�

� �µk�1⌃
⇢⌫
⌘
(/̀�mI)(/̀� /k3 �mI)

i
. (4.54)

Evaluating the trace of gamma matrices the above expression reduces to

U1 = �
dm22
p
2f

"µ⌫(k1)"⇢�(k2)

Z
dd`

(2⇡)d
1

`2 +m2 � i✏

1

(`� k3)2 +m2 � i✏
h
⌘µ⇢⌘⌫�(2(`2 +m2)� 2`.k3 + k23)�

3

2
⌘µ⇢

�
(2`+ k2)

⌫(2`+ k1)
�
 i

. (4.55)

Now using Feynman parametrization to combine the denominators, doing loop momentum

shift ` ! `+ xk3 and keeping the non-vanishing terms under ` $ �` symmetry, we get

U1 = �
dm22
p
2f

Z 1

0
dx

"
("1 · "2)

(✓
2�

6

d

◆
J (1, 2;�)

+
�
(1� 2x+ 2x2)(k1 + k2)

2 + 2m2
�
J (0, 2;�)

)

�
3

2
(k2."1."2.k1) (2x� 1)2J (0, 2;�)

#
, (4.56)
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+ +

Acompensated
QFT [Ψ, gμν, τ] = ∫ ddx −g Ψ(x)(iγaEμ

a Dμ − me−τ(x)) Ψ(x)

deformation + 
compensation 

Low energy expansion: 

where � = m2 + x(1� x)(k1 + k2)2. The second diagram evaluates to

U2 =
2m
p
2f

"µ⌫(k1)"⇢�(k2)

Z
dd`

(2⇡)d
1

`2 +m2 � i✏

1

(`� k3)2 +m2 � i✏
1

(`+ k2)2 +m2 � i✏
Tr

h
(/̀� /k3 �m)

�
�µ(`+ k2)

⌫ + �µk1↵⌃
↵⌫
�

(/̀+ /k2 �m)
�
�⇢`� + �⇢k2�⌃

��
�
(/̀�m)

i
(4.57)

Now evaluating the gamma matrix traces, combining the denominators using Feynman parametriza-

tion and performing loop momentum shift ` ! `� xk1 � (x+ y)k2 the non-vanishing contri-

bution from the above expression becomes

U2 =
2m2

p
2f

Z 1

0
dxdydz 2�(x+ y + z � 1)

"
("1 · "2)

(
d� 6

d+ 2
J (2, 3;�)

+
�
m2 + x2k21 + (1� 2xz)k1.k2 + z2k22

�
J (1, 3;�)

)

+(k2."1."2.k1)
n
(�1 + (12� d)xz) J (1, 3;�)� dxz

�
m2 + x2k21

+(1� 2xz) k1.k2 + z2k22
�
J (0, 3;�)

o

+(k2."1.k2)(k1."2.k1) dxz(1� 4xz) J (0, 3;�)

#
, (4.58)

where � = m2 + x(1� x)k21 + z(1� z)k22 + 2xzk1.k2. The contribution of the third Feynman

diagram U3 can be read o↵ from the above expression of U2 by exchanging ("1, k1) $ ("2, k2).

Now let us sum over the contributions of the three diagrams then set d = 4 � ✏ and

expand around ✏ = 0. Having done that, we expand the expression in powers of momenta

keeping only terms containing four powers of momenta. Performing the integrals over the

Feynman parameters we obtain

V(hh')(k1, k2, k3; "1, "2)

=
i2

720
p
2⇡2f

h
("1 · "2)

�
14k21k

2
2 + 6

�
(k21)

2 + (k22)
2
�
+ 25(k1.k2)

2 + 21k1.k2(k
2
1 + k22)

 

�(k2."1."2.k1)
�
6(k21 + k22) + 26k1.k2

 
+ 7(k2."1.k2)(k1."2.k1)

i
+ · · · (4.59)

Comparing the above expression with (3.18) we conclude that

�a =
11

5760⇡2
, �c =

18

5760⇡2
, r1 =

1

5760⇡2
. (4.60)

The values of �a and �c perfectly agree with (4.1).
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where � = m2 + x(1� x)(k1 + k2)2. The second diagram evaluates to

U2 =
2m
p
2f

"µ⌫(k1)"⇢�(k2)

Z
dd`

(2⇡)d
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`2 +m2 � i✏

1

(`� k3)2 +m2 � i✏
1
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�
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�⇢`� + �⇢k2�⌃

��
�
(/̀�m)

i
(4.57)

Now evaluating the gamma matrix traces, combining the denominators using Feynman parametriza-

tion and performing loop momentum shift ` ! `� xk1 � (x+ y)k2 the non-vanishing contri-

bution from the above expression becomes

U2 =
2m2

p
2f

Z 1

0
dxdydz 2�(x+ y + z � 1)

"
("1 · "2)

(
d� 6

d+ 2
J (2, 3;�)

+
�
m2 + x2k21 + (1� 2xz)k1.k2 + z2k22
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#
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where � = m2 + x(1� x)k21 + z(1� z)k22 + 2xzk1.k2. The contribution of the third Feynman

diagram U3 can be read o↵ from the above expression of U2 by exchanging ("1, k1) $ ("2, k2).

Now let us sum over the contributions of the three diagrams then set d = 4 � ✏ and

expand around ✏ = 0. Having done that, we expand the expression in powers of momenta

keeping only terms containing four powers of momenta. Performing the integrals over the

Feynman parameters we obtain

V(hh')(k1, k2, k3; "1, "2)

=
i2

720
p
2⇡2f

h
("1 · "2)

�
14k21k

2
2 + 6

�
(k21)

2 + (k22)
2
�
+ 25(k1.k2)

2 + 21k1.k2(k
2
1 + k22)

 

�(k2."1."2.k1)
�
6(k21 + k22) + 26k1.k2

 
+ 7(k2."1.k2)(k1."2.k1)

i
+ · · · (4.59)

Comparing the above expression with (3.18) we conclude that

�a =
11

5760⇡2
, �c =

18

5760⇡2
, r1 =

1

5760⇡2
. (4.60)

The values of �a and �c perfectly agree with (4.1).
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where � = m2 + x(1� x)(k1 + k2)2. The second diagram evaluates to

U2 =
2m
p
2f

"µ⌫(k1)"⇢�(k2)
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dd`
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1

`2 +m2 � i✏

1

(`� k3)2 +m2 � i✏
1

(`+ k2)2 +m2 � i✏
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(/̀� /k3 �m)

�
�µ(`+ k2)

⌫ + �µk1↵⌃
↵⌫
�

(/̀+ /k2 �m)
�
�⇢`� + �⇢k2�⌃

��
�
(/̀�m)

i
(4.57)

Now evaluating the gamma matrix traces, combining the denominators using Feynman parametriza-
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where � = m2 + x(1� x)k21 + z(1� z)k22 + 2xzk1.k2. The contribution of the third Feynman

diagram U3 can be read o↵ from the above expression of U2 by exchanging ("1, k1) $ ("2, k2).

Now let us sum over the contributions of the three diagrams then set d = 4 � ✏ and

expand around ✏ = 0. Having done that, we expand the expression in powers of momenta

keeping only terms containing four powers of momenta. Performing the integrals over the

Feynman parameters we obtain
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Comparing the above expression with (3.18) we conclude that

�a =
11

5760⇡2
, �c =

18

5760⇡2
, r1 =

1

5760⇡2
. (4.60)

The values of �a and �c perfectly agree with (4.1).
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Example III: weakly relevant flow 

energy 

0

UV CFT + deformation

IR CFT

β(λ⋆) = 0

λ⋆ =
2δ

C𝒪𝒪𝒪Ω3

AQFT = AUV CFT + λ0m4−Δ
0 ∫ d4x 𝒪(x)

Δ = 4 − δ 0 < δ ≪ 1short flow if

perturbative parameter            λ0

``renormalization’’ 
at scale  μ

β(λ) = − δλ +
1
2

C𝒪𝒪𝒪Ω3λ2 + O(λ3)

renormalized couplingλ(μ) →

Z(μ)− 1
2 𝒪(x) ≡ O(x) → renormalized operator

OPE coefficient

γ(λ) = C𝒪𝒪𝒪Ω3λ + O(λ2)
Vol(𝕊3) = 2π2



Example III: weakly relevant flow 

Acompensated
QFT = AUV CFT[ϕ, gμν] + λ0 ∫ d4x −g (m0Ω(x))δ 𝒪g(x)

AUV CFT + κ∫ d4xhμν(x)Tμνx + O(κ2) Ω(x) = 1 −
φ(x)

2f

where tE denotes the Euclidean time and tL denotes the Lorentzian time. In our convention

the Euclidean action does not have any superscripts compared to the Lorentzian one. All

the correlation functions in this paper are time-ordered either with respect to Euclidean or

Lorentzian time.

[DK: Summary of the paper [1]. Let us briefly summarize the most relevant statements

of [1] for the present work. In [1] we have shown how to compute the di↵erence of the

trace anomalies (??) in d = 4 by coupling the original QFT to the dilaton and the graviton

background fields. We denote these background fields by '(x) and hµ⌫(x) respectively. (The

technology of [1] is the extension of the one introduced in [20].) We will work with traceless

and transverse gravitons only, namely

⌘µ⌫hµ⌫(x) = 0, @µh
µ⌫(x) = 0. (4.2)

Moreover, both the dilaton and the graviton fields will remain non-dynamical. ]

[DK:

]

The action for weakly relevant flows was given in equations (3.1) and (3.2). In this section

we would like to couple this theory to the dilaton and the graviton fields as explained in [1]

and write down the IR e↵ective action for these background fields.

Let us start from the graviton. The graviton field hµ⌫(x) enters through the metric gµ⌫(x)

via the following relation

gµ⌫(x) = �µ⌫ + 2hµ⌫(x). (4.3)

We remind that we work in Euclidean metric throughout this section. The parameter  has

mass dimension �1. It will be used as an expansion parameter. In such expansion it simply

counts the total number of the graviton fields. The dilaton field '(x) enters through the

compensator field ⌦(x) via the following relation

⌦(x) = e�⌧(x) = 1�
1

p
2f

'(x), (4.4)

where f is a non-negative coupling constant of mass dimension +1 and f�1 will be used

as an expansion parameter which counts number of dilaton fields. The compensator field

⌦(x) is introduced by replacing all the mass scales in the theory by their product with the

compensator field. In the case of weakly relevant flows we have a single mass scale m0, thus,

we should make the following replacement

m0 �! m0⌦(x). (4.5)

At the level of the running coupling constant the conformal compensation prescription follows

from [41, 42] suggests the following substitution

µ��(µ) �! µ��
�
⌦(x)�1µ

�
. (4.6)
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In the renormalized theory it demands:

In the f ! 1 limit using the definition (3.25) we can write

�
�
⌦(x)�1µ

�
= �(µ) +

1
p
2f

'(x)�(�) +O(f�2). (4.7)

We denote the action describing the weakly relevant flow coupled to the compensator

field ⌦(x) and the background metric gµ⌫(x) by A0. It reads as

A0 [g, ⌦] = AUV CFT[g] +Adeformation [g, ⌦] . (4.8)

Note that, to avoid cluttered notation, we have removed the dependence of the UV CFT

degrees of freedom � in the arguments of the above actions. The UV CFT action in the

curved background can be written in the  expansion as follows4

AUV CFT[g] = AUV CFT + 

Z
ddx hµ⌫(x)T

µ⌫(x) +O(2). (4.9)

Here Tµ⌫(x) is the stress-tensor of the UV CFT in flat space. The deformation of the UV

CFT in weakly relevant flows was written in two di↵erent forms (3.2) and (3.22). Using the

first form given by (3.2) and the rule (4.5) we get

Adeformation[g,⌦] = �0

Z
ddx

p
g (m0⌦(x))

�
Og(x). (4.10)

Here
p
g is the standard measure in the curved background. We also use the subscript g for

the scalar operator in order to emphasize that in the curved background it might depend on

the metric. The operator Og(x) has the Weyl scaling dimension � = d� �. Using the second

form given by (3.22) and the rule (4.6) we get instead

Adeformation [g,⌦] =

Z
ddx

p
g µ� �

�
⌦(x)�1µ

�
Og(x). (4.11)

E↵ective action for dilaton and graviton Let us now consider the action (4.8) and

integrate out all the massive degrees of freedom. This procedure will leaves us with an IR

action which consists of the IR CFT in curved background, dilaton-graviton EFT and possible

interaction of dilaton with IR CFT operators in curved background. Here we only focus on

deriving the dilaton-graviton EFT action.

Let us define the partition function of the theory (4.8) as

Z[', h] ⌘

Z
[d�] e�A0[g,⌦]. (4.12)

4
Here we used the following definition of the stress-tensor

Tµ⌫
(x) ⌘ 2

p
g

�A[g]
�gµ⌫(x)

.

From this it follows that

�gA[g] =
1

2

Z
ddx

p
g �gµ⌫(x)T

µ⌫
(x).
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(Introducing background fields in 4d Euclidean QFT)



Example III: weakly relevant flow 

Acompensated
QFT = AUV CFT[ϕ, gμν] + λ0 ∫ d4x g (m0Ω(x))δ 𝒪g(x)

AUV CFT + κ∫ d4xhμν(x)Tμν(x) + O(κ2) Ω(x) = 1 −
φ(x)

2f

AEFT[φ, h] = − log∫ [dϕ]g e
−Acompensated

QFT

5 Derivation of �a using dilatons

The goal of this section is to compute �a in weakly relevant flows. In order to do this we

will compute the three-dilaton vertex defined as

(2⇡)4�(4)(k1 + k2 + k3)⇥ V(''')(k1, k2, k3) ⌘
i �3AL

EFT

�'(k1)�'(k2)�'(k3)

�����
h,'=0

(5.1)

from the e↵ective action (4.14). Recall that the Lorentzian action is related to the Euclidean

one via the raltion (4.1). Comparing the result with the generic prediction (5.3) we will read

o↵ the value of �a. At the leading order in � the relevant part of the e↵ective action (4.14)

for this computation is simply given by

AEFT[', h] = �YOO + · · · (5.2)

In [1] we found that the three-point vertex of three dilatons reads as

V(''')(k1, k2, k3) =
i
p
2

f3

✓
�a

⇣�
k21
�2

+
�
k22
�2

+
�
k23
�2⌘

+ 2(18r1 ��a)
�
k21k

2
2 + k22k

2
3 + k23k

2
1

�
+ . . .

◆
. (5.3)

5.1 Rigorous derivation (option 1)

In this subsection we use the expression for YOO given in (4.15). This was referred to as

option 1. Plugging (4.15) together with (4.4) into (5.2) we get

AEFT[', h] = �
1

4
p
2f3

�2
⇣
m�

0�0

⌘2
Z

ddx1

Z
ddx2 '(x2)

2'(x1)

⇥ hO(x12)O(0)iQFT + · · · (5.4)

Here we kept only the terms relevant for the computation of the vertex (5.1), namely the

terms which contain three fields '(x). In this expression the information about the RG

flow is contained in the QFT two-point function. The e↵ective action (5.4) is written in the

language of the standard perturbation theory since we expand around some QFT defined at

the mass scale m0.

Let us now perform the change of variables

xµ ⌘ xµ2 , yµ ⌘ xµ12. (5.5)

We can then Taylor expand the field '(x1) = '(x+y) around x up to four powers in y. Recall

that according to the general prediction (5.3) the information about �a enters in the vertex

at the four derivative order. As consequence in order to probe �a here we need to expand
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The e↵ective action of the dilaton and graviton fields is defined then as

AEFT[', h] ⌘ � logZ[', h] = � log

Z
[d�] e�A0[g,⌦]. (4.13)

It can be computed by plugging the equations (4.8), (4.9) together with either (4.10) or (4.11)

into (4.13). We then expand in  and f�1, and small �0 or �(µ) as a perturbative expansion.

By doing so, we obtain the following expression

AEFT[', h] = � log (ZUV CFT)� log
⇣
1 + YOO + YTTO + . . .

⌘
. (4.14)

Here YOO and YTTO denote the contribution of the two-point function hOOi and the three-

point function hTTOi. Below we will write their explicit expressions. In the case when we

use (4.10), we get

option 1: YOO =
1

2
�2
0m

2�
0

Z
ddx1

Z
ddx2⌦(x1)

�⌦(x2)
�
hO(x1)O(x2)iQFT +O(), (4.15)

together with

option 1: YTTO = �
2

2
�0m

�
0

Z
ddx1

Z
ddx2

Z
ddx3 hµ⌫(x1)h⇢�(x2)⌦(x3)

�

⇥ hTµ⌫(x1)T
⇢�(x2)O(x3)iQFT +O(3). (4.16)

In the case when we use (4.11) and performed conformal perturbation theory expansion about

UV CFT, we get instead

option 2: YOO =
1

2

Z
ddx1

Z
ddx2 µ2��

�
⌦(x1)

�1µ
�
�
�
⌦(x2)

�1µ
�

⇥ hO(x1)O(x2)iQFT +O(), (4.17)

together with

option 2: YTTO ⌘ �
2

2

Z
ddx1

Z
ddx2

Z
ddx3 hµ⌫(x1)h⇢�(x2)µ

��
�
⌦(x3)

�1µ
�

⇥ hTµ⌫(x1)T
⇢�(x2)O(x3)iQFT +O(3). (4.18)

While writing down the expressions in (4.15), (4.16), (4.17) and (4.18), we only performed

expansion about flat background and the corrections are denoted by di↵erent orders in . On

top of it we also need to expand the compensator field ⌦ using (4.4) and (4.7) as a power

series in f�1. Note that the stress tensor appearing in the correlator expressions in (4.16)

and (4.18) is the CFT stress tensor operator Tµ⌫ instead of the QFT stress tensor operator

T
µ⌫ , as the trace part of Tµ⌫ in (3.63) won’t contribute due to the choice of a traceless metric

fluctuation in (4.2).
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κ2

2 2f
(δmδ

0 λ0)

The e↵ective action of the dilaton and graviton fields is defined then as

AEFT[', h] ⌘ � logZ[', h] = � log

Z
[d�] e�A0[g,⌦]. (4.13)

It can be computed by plugging the equations (4.8), (4.9) together with either (4.10) or (4.11)

into (4.13). We then expand in  and f�1, and small �0 or �(µ) as a perturbative expansion.

By doing so, we obtain the following expression

AEFT[', h] = � log (ZUV CFT)� log
⇣
1 + YOO + YTTO + . . .

⌘
. (4.14)

Here YOO and YTTO denote the contribution of the two-point function hOOi and the three-

point function hTTOi. Below we will write their explicit expressions. In the case when we

use (4.10), we get

option 1: YOO =
1

2
�2
0m

2�
0

Z
ddx1

Z
ddx2⌦(x1)

�⌦(x2)
�
hO(x1)O(x2)iQFT +O(), (4.15)

together with

option 1: YTTO = �
2

2
�0m

�
0

Z
ddx1

Z
ddx2

Z
ddx3 hµ⌫(x1)h⇢�(x2)⌦(x3)

�

⇥ hTµ⌫(x1)T
⇢�(x2)O(x3)iQFT +O(3). (4.16)

In the case when we use (4.11) and performed conformal perturbation theory expansion about

UV CFT, we get instead

option 2: YOO =
1

2

Z
ddx1

Z
ddx2 µ2��

�
⌦(x1)

�1µ
�
�
�
⌦(x2)

�1µ
�

⇥ hO(x1)O(x2)iQFT +O(), (4.17)

together with

option 2: YTTO ⌘ �
2

2

Z
ddx1

Z
ddx2

Z
ddx3 hµ⌫(x1)h⇢�(x2)µ

��
�
⌦(x3)

�1µ
�

⇥ hTµ⌫(x1)T
⇢�(x2)O(x3)iQFT +O(3). (4.18)

While writing down the expressions in (4.15), (4.16), (4.17) and (4.18), we only performed

expansion about flat background and the corrections are denoted by di↵erent orders in . On

top of it we also need to expand the compensator field ⌦ using (4.4) and (4.7) as a power

series in f�1. Note that the stress tensor appearing in the correlator expressions in (4.16)

and (4.18) is the CFT stress tensor operator Tµ⌫ instead of the QFT stress tensor operator

T
µ⌫ , as the trace part of Tµ⌫ in (3.63) won’t contribute due to the choice of a traceless metric

fluctuation in (4.2).
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φ(x3)

The e↵ective action of the dilaton and graviton fields is defined then as

AEFT[', h] ⌘ � logZ[', h] = � log

Z
[d�] e�A0[g,⌦]. (4.13)

It can be computed by plugging the equations (4.8), (4.9) together with either (4.10) or (4.11)

into (4.13). We then expand in  and f�1, and small �0 or �(µ) as a perturbative expansion.

By doing so, we obtain the following expression

AEFT[', h] = � log (ZUV CFT)� log
⇣
1 + YOO + YTTO + . . .

⌘
. (4.14)

Here YOO and YTTO denote the contribution of the two-point function hOOi and the three-

point function hTTOi. Below we will write their explicit expressions. In the case when we

use (4.10), we get

option 1: YOO =
1

2
�2
0m

2�
0

Z
ddx1

Z
ddx2⌦(x1)

�⌦(x2)
�
hO(x1)O(x2)iQFT +O(), (4.15)

together with

option 1: YTTO = �
2

2
�0m

�
0

Z
ddx1

Z
ddx2

Z
ddx3 hµ⌫(x1)h⇢�(x2)⌦(x3)

�

⇥ hTµ⌫(x1)T
⇢�(x2)O(x3)iQFT +O(3). (4.16)

In the case when we use (4.11) and performed conformal perturbation theory expansion about

UV CFT, we get instead

option 2: YOO =
1

2

Z
ddx1

Z
ddx2 µ2��

�
⌦(x1)

�1µ
�
�
�
⌦(x2)

�1µ
�

⇥ hO(x1)O(x2)iQFT +O(), (4.17)

together with

option 2: YTTO ⌘ �
2

2

Z
ddx1

Z
ddx2

Z
ddx3 hµ⌫(x1)h⇢�(x2)µ

��
�
⌦(x3)

�1µ
�

⇥ hTµ⌫(x1)T
⇢�(x2)O(x3)iQFT +O(3). (4.18)

While writing down the expressions in (4.15), (4.16), (4.17) and (4.18), we only performed

expansion about flat background and the corrections are denoted by di↵erent orders in . On

top of it we also need to expand the compensator field ⌦ using (4.4) and (4.7) as a power

series in f�1. Note that the stress tensor appearing in the correlator expressions in (4.16)

and (4.18) is the CFT stress tensor operator Tµ⌫ instead of the QFT stress tensor operator

T
µ⌫ , as the trace part of Tµ⌫ in (3.63) won’t contribute due to the choice of a traceless metric

fluctuation in (4.2).
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→ V(hhφ)



Example III: weakly relevant flow 
(computation of )Δa

Four derivative part of the relevant EFT action:the e↵ective action (6.10) around x for small values of y up to the four derivative order. The

relevant part of the action (5.20) then becomes

AEFT[', h] = �
1

4
p
2f3

Z
ddx '(x)2@µ@⌫@⇢@�'(x)L

µ⌫⇢�
1 (�) + · · · , (5.6)

where we have defined

Lµ⌫⇢�
1 (�) ⌘

1

24
�2

⇣
m�

0�0

⌘2
Z

ddy yµy⌫y⇢y� hO(y)O(0)iQFT. (5.7)

Using Lorentz covariance, the integral (5.7) can be decomposed into tensor structures as

follows

Lµ⌫⇢�
1 (�) = (�µ⌫�⇢� + �µ⇢�⌫� + �µ��⌫⇢)⇥ L1(�), (5.8)

where the scalar part reads as

L1(�) ⌘
�2

�
m�

0�0
�2

24d(d+ 2)

Z
ddy (y2)2 hO(y)O(0)iQFT. (5.9)

Plugging (5.8) together with (5.9) into (5.6) we get

AEFT[', h] = �
3L1(�)

4
p
2f3

Z
ddx '(x)2@4'(x) + · · · . (5.10)

Due to the relation (4.1) the Lorentzian EFT action becomes

AL
EFT[', h] =

3L1(�)

4
p
2f3

Z
ddx '(x)2@4'(x) + · · · , (5.11)

where the integral L1(�) is still defined in Euclidean space. Fourier transforming (5.11) and

using the definition of the three-dilaton vertex (5.1) we obtain the desired result

V(''')(k1, k2, k3) =
3iL1(�)

2
p
2f3

⇥
�
(k21)

2 + (k22)
2 + (k23)

2
�
. (5.12)

Comparing this result with (5.3) we conclude that

�a =
3

4
L1(�), r1 =

�a

18
. (5.13)

Integral evaluation Now inverting the definition in (3.34) and substituting it in (5.9), the

integral L1(�) turns out

L1(�) =
�2(�0m�

0)
2

24d(d+ 2)

Z
ddy (y2)2 Z(µ)G(r, µ,�). (5.14)

Plugging the solution (3.54) and substituting the result of (3.29) into the above expression

we get

L1(�) =
�2⌦d�1�2µ2�

⇣
1� 2�

�?
+O

⇣
�2

�2
?

⌘⌘

24d(d+ 2)

Z
1

0
dr r�d+3+2� 1

⇣
1 + ((µr)� � 1) �

�?

⌘4 .(5.15)
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the e↵ective action (6.10) around x for small values of y up to the four derivative order. The

relevant part of the action (5.20) then becomes

AEFT[', h] = �
1

4
p
2f3

Z
ddx '(x)2@µ@⌫@⇢@�'(x)L

µ⌫⇢�
1 (�) + · · · , (5.6)

where we have defined

Lµ⌫⇢�
1 (�) ⌘

1

24
�2

⇣
m�

0�0

⌘2
Z

ddy yµy⌫y⇢y� hO(y)O(0)iQFT. (5.7)

Using Lorentz covariance, the integral (5.7) can be decomposed into tensor structures as

follows

Lµ⌫⇢�
1 (�) = (�µ⌫�⇢� + �µ⇢�⌫� + �µ��⌫⇢)⇥ L1(�), (5.8)

where the scalar part reads as

L1(�) ⌘
�2

�
m�

0�0
�2

24d(d+ 2)

Z
ddy (y2)2 hO(y)O(0)iQFT. (5.9)

Plugging (5.8) together with (5.9) into (5.6) we get

AEFT[', h] = �
3L1(�)

4
p
2f3

Z
ddx '(x)2@4'(x) + · · · . (5.10)

Due to the relation (4.1) the Lorentzian EFT action becomes

AL
EFT[', h] =

3L1(�)

4
p
2f3

Z
ddx '(x)2@4'(x) + · · · , (5.11)

where the integral L1(�) is still defined in Euclidean space. Fourier transforming (5.11) and

using the definition of the three-dilaton vertex (5.1) we obtain the desired result

V(''')(k1, k2, k3) =
3iL1(�)

2
p
2f3

⇥
�
(k21)

2 + (k22)
2 + (k23)

2
�
. (5.12)

Comparing this result with (5.3) we conclude that

�a =
3

4
L1(�), r1 =

�a

18
. (5.13)

Integral evaluation Now inverting the definition in (3.34) and substituting it in (5.9), the

integral L1(�) turns out

L1(�) =
�2(�0m�

0)
2

24d(d+ 2)

Z
ddy (y2)2 Z(µ)G(r, µ,�). (5.14)

Plugging the solution (3.54) and substituting the result of (3.29) into the above expression

we get

L1(�) =
�2⌦d�1�2µ2�

⇣
1� 2�

�?
+O

⇣
�2

�2
?

⌘⌘

24d(d+ 2)

Z
1

0
dr r�d+3+2� 1

⇣
1 + ((µr)� � 1) �

�?

⌘4 .(5.15)

– 25 –

Now from (3.35) we get

G(r, µ = r�1, ⇤) =
1

r2(d��)
, (3.53)

which sets the boundary condition in (3.52). Hence the final solution of Callan-Symanzik

equation for the renormalized two point function turns out

G(r, µ,�) =
1

r2(d��)
⇥

✓
�?

�? + ((µr)� � 1)�(µ)

◆4

. (3.54)

Let us now also provide the original (un-renormalized) two-point function of the bare

scalar operator O(x) in terms of the coupling �0. Recalling (3.34), plugging the solution

(3.54) ans using the explicit expression for the Z(µ) factor given by (3.30) we get

hO(x1)O(x2)iQFT = Z(µ)G(r, µ,�) =
1� 4�(µ)

�?

r2(d��)
⇥

✓
�?

�? + ((µr)� � 1)�(µ)

◆4

. (3.55)

and then the relation between �(µ) and �0 given by (3.28), we get

hO(x1)O(x2)iQFT =
1� 4�(µ)

�?

r2(d��)
⇥

✓
�?

�? + ((µr)� � 1)�(µ)

◆4

. (3.56)

We then need to plug the relation between �(µ) and �0 given by (3.28). Let us write it here

for convenience

�(µ) = (m0µ
�1)��0 � (m0µ

�1)2���1
? �2

0

⇣
1� (m0µ

�1)�2�
⌘
. (3.57)

We should pick the renormalization scale µ in the vicinity of m0. We can then approximately

write �(µ) ⇡ �0. [DK: Questions to Biswajit:

1. I do not understand what is happening. If we plug (3.57) into the bare correlator (3.56)

we get the final expression which depends on µ. However, our bare correlator cannot

depend on µ. If we take one derivative in µ of the resulting expression (in order to see

how the result changes with µ) and expand in small �0 we see that the derivative is

0+O(�2
0) so it is indeed independent of µ at the leading order in �0 which we use. Does

it mean that we can then substitute any value of µ in the result? We will get di↵erent

looking answers of course. The choice µ = m0 is completely random. If we do make this

choice, than we reproduce (3.58). Biswajit says it’s wrong. Biswajit, could you please

write your expression for the bare correlator in terms of �0 only?

2. We should discuss Wilson-Fisher theory. Consider equations (2.1) - (2.3) in Slava’s

paper [36]. My current understanding is that for any value of g(µ) defined at the scale

µ we will flow to the IR fixed point. This fixed point is independent of the original

value g(µ) and is only fixed by ✏. Moreover, at the IR fixed point we can describe our

theory by the (CFT + 1
4!g?µ

✏�4 + irrelevant terms) interaction. Even though we have

an interaction, for renormalized operators at the scale µ = 0 this interactrion e↵ectively
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Solution of Callan-
Symanzik equation + 
conformal perturbation 
theory

Focusing on d = 4 and performing the integral explicitly we obtain the following expression

L1(�) =
�⇡2�2

?

⇣
1� 2�

�?
+O

⇣
�2

�2
?

⌘⌘

1728
⇣
1� �

�?

⌘2 . (5.16)

In the approximation � << �? the leading contribution of the above integral after substituting

the �? value from (3.38) becomes

L1(�) =
�3

1728⇡2 C2
OOO

b(�)2
�
1 +O(�2)

�
. (5.17)

Plugging this integral into (5.13) at leading order in small � we get

d = 4 : �a =
�3

2304⇡2C2
OOO

�
1 +O(�2)

�
, r1 =

�a

18
. (5.18)

Above we substituted lim
�!0

b(�) = 1 as follows from (3.18) in the evaluation of the above

expression.

5.2 Derivation with the IR regulator (option 2)

In this subsection we give another (less rigorous) derivation of the result (5.18). This way of

computing �a, however, will be crucial for the computation of �c in the next section. Here

we use the expression for YOO given in (4.17). This was referred to as option 2.

Plugging (4.17) together with (4.7) into (5.2) we get

AEFT[', h] = �
1

8
p
2f3

Z
ddx1

Z
ddx2 µ2��(�)2

�
1 + �0(�)

�

⇣
'(x1)

2'(x2) + '(x2)
2'(x1)

⌘
hO(x1)O(x2)iQFT + · · · (5.19)

Here we again only wrote terms which are relevant for the computation of the vertex (5.1). In

principle, the QFT 3-point function of the operator O can also contribute to the EFT action

containing three dilaton fields. However, at leading order in the coupling �(µ) expansion

(leading order in small � as well), the dominant contribution comes from the above EFT

action. In fact, at leading order in the small �(µ) expansion, we can neglect �0(�) compare to

1 in the above expression. Once we neglect �0(�), it is clear that the above expression agrees

with (5.4) after using (3.24).

Using the permutation symmetry of x1 $ x2 of the Euclidean correlator and translation

invariance we can bring (5.19) into the following simple form

AEFT[', h] = �
1

4
p
2f3

Z
ddx1

Z
ddx2 µ2��(�)2'(x2)

2'(x1)

⇥ hO(x12)O(0)iQFT + · · · (5.20)
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Agrees with the  result 
of Klebanov, Pufu and 
Safdi (2011) from free 
energy computation on  .

Δa

𝕊4

V(φφφ)
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conformal perturbation theory

where the five tensor structures read as

Tabcd
1 (x12) ⌘

xa12x
b
12x

c
12x

d
12

r4
,

Tabcd
2 (x12) ⌘

xa12x
b
12�

cd + xc12x
d
12�

ab

r2
,

Tabcd
3 (x12) ⌘

xa12x
c
12�

bd + xb12x
c
12�

ad + xa12x
d
12�

bc + xb12x
d
12�

ac

r2
,

Tabcd
4 (x12) ⌘�ab�cd

Tabcd
5 (x12) ⌘�ac�bd + �bc�ad.

(3.65)

In this section we compute the form of the stress-tensor two-point function in weakly

relevant flows along the RG flow. The two-point function of the stress-tensor in a general

QFT can be computed using the standard formula

hT
µ⌫(x1)T

⇢�(x2)iQFT =
1

ZQFT

Z
[d�] Tµ⌫(x1)T

⇢�(x2) e
�AQFT[�], (3.66)

where [d�] represents integration over all the degrees of freedom in the UV CFT and ZQFT is

the partition function of the QFT. Using (3.1) and (3.2), and expanding the above expression

around small values of �0 we get

hT
µ⌫(x1)T

⇢�(x2)iQFT = hT
µ⌫(x1)T

⇢�(x2)iUV CFT

�m�
0�0

Z
ddx3hT

µ⌫(x1)T
⇢�(x2)O(x3)iUV CFT +O

�
�2
0

�
. (3.67)

Plugging here the decomposition (3.63) we finally get

hT
µ⌫(x1)T

⇢�(x2)iQFT = hTµ⌫(x1)T
⇢�(x2)iUV CFT

�m�
0�0

Z
ddx3hT

µ⌫(x1)T
⇢�(x2)O(x3)iUV CFT +O

�
�2
0

�
. (3.68)

Let us explain why this is the case. In CFTs we always choose the basis of local operators in

such a way that two-point functions of di↵erent operators vanish. In particular

hO(x1)T
⇢�(x2)iUV CFT = 0. (3.69)

The two-point function of two operators hO(x1)O(x2)i appears at the order O(�2
0) and, thus,

can be neglected. The terms which contain the tree-point functions hTµ⌫(x1)O(x2)O(x3)i

and hO(x1)O(x2)O(x3)i appear at the order O(�2
0) and O(�3

0) respectively. As a result they

are also neglected.

Since at the order O(�0) the two-point function (3.68) is traceless in both (µ⌫) and (⇢�)

pairs of indices, there are two relations between the 5 functions hm(r) at the order O(�0)

which read as

h3(r) = �
1

4
(h1(r) + d h2(r)) , h5(r) = �

1

2
(h2(r) + d h4(r)) . (3.70)
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• Probably the simplest setup where one should study three-point functions is the three-

point function of conserved currents. One can for example attempt to prove ’t Hooft

anomaly matching in position space in d = 4 in an analogous way to the d = 2 derivation

found in [16, 100, 101].
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A Result of Osborn and Petkou

The two- and three-point functions of the stress-tensor in CFTs were derived [38]. Their

result reads as

hTµ⌫(x1)T
⇢�(x2)i = CT ⇥

I
µ⌫,⇢�(x12)�
x212

�d , (A.1)

hTµ⌫(x1)T
⇢�(x2)O(x3)i = CTTO ⇥

I
µ⌫,↵�(x13)I⇢�,��(x23)t↵�,��(X12)
�
x212

� 2d��
2

�
x223

��
2

�
x231

��
2

, (A.2)

where we have defined

xµij ⌘ xµi � xµj , Xµ
12 ⌘

xµ13
x213

�
xµ23
x223

, (A.3)

together with

Iµ⌫(x) ⌘ �µ⌫ � 2
xµx⌫

x2
, I

µ⌫,⇢�(x) ⌘
1

2
Iµ⇢(x)I⌫�(x) +

1

2
Iµ�(x)I⌫⇢(x)�

1

d
�µ⌫�⇢�. (A.4)

Finally, the object t reads as

t↵�,��(X) ⌘ Ah1↵�(X)h1��(X) + Bh2↵�,��(X) + Ch3↵�,��(X). (A.5)
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640
π2

× cUVthe graviton fields. In section 4 we derive the IR e↵ective action for these background fields.

Using this IR e↵ective action we then compute the three-dilaton vertex V(''')(k1, k2, k3) in

section 5 and the two-graviton-one-dilaton vertex V(hh')(k1, k2, k3; "1, "2) in section 6. Here

kµi are the momenta of the background fields and "µ⌫i are polarizations of the gravitons.

Comparing these results with the generic prediction for these vertices provided in [1] we

found that

�c =
⇡2

2304

CTTO

COOO

�, �a =
�3

2304⇡2C2
OOO

. (2.5)

The main result of this section is the confirmation that the value of �c computed using the

background field method agrees with the direct computation (2.4). The �a value agrees with

the one found in [29] by computing the four-dilaton vertex V('''')(k1, k2, k3, k4). We find

important to provide further details of the above computation below.

The vertex V(''')(k1, k2, k3) is given by equations (5.12) and (5.14). It is written as

a certain integral of the QFT two-point function (2.2). For performing this integral it was

crucial to have the expression (2.2) which is valid along the whole RG flow or in other words

in the whole range r 2 [0,1), where r is the distance between the two scalar operators O(x1)

and O(x2).

In section 5 we also provide an alternative way of computing the integral (5.14) appearing

in the vertex V(''')(k1, k2, k3). We first formulate our expressions in terms of the renormalized

coupling �(µ) at a scale µ. The integral does not depend on µ. By using a very special choice

of the scale µ = r�1 along the integration in r we reduce the integral over the QFT two-point

function (2.2) to the integral over the UV CFT two-point function

hO(x1)O(x2)iUV CFT =
1

r2(d��)
. (2.6)

This method was used in the original derivation of �a in [29]. It was not, however, fully

justified at the time since the explicit expression of the QFT two-point function (2.2) was not

known.

The vertex V(hh')(k1, k2, k3; "1, "2) is computed in section 6. It is given by a certain

double integral over the QFT three-point function

hT
µ⌫(x1)T

⇢�(x2)O(x3)iQFT, (2.7)

where T
µ⌫(x) is the QFT stress-tensor. There are two significant complications which we

encounter while computing the two-graviton-one-dilaton vertex compared to section 5. First,

we have to work with complicated system of tensor structures. We deal with this complication

by performing computations in Mathematica. Second, we do not have the expression for the

QFT three-point function (2.7). This is the most serious obstacle. We deal with this obstacle

by again using the renormalized coupling �(µ) at the scale µ. We then pick the following

value of µ = (x212x
2
13x

2
23)

�
1
6 inside the double integral, where x⌫ij ⌘ x⌫i � x⌫j . This choice is

the most symmetric generalization of the choice made for evaluating the integral (5.14). Our

assumption, then, is that under this choice the QFT three-point function (2.7) reduces to the
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Providing dynamics to graviton and dilaton 

Ah
kinetic = ( 1

2κ2
+

f 2

6 )∫ d4x −g R

Aφ
kinetic = −

f 2

6 ∫ d4x − ̂g R( ̂g )

5 The Dilaton-Graviton Scattering Amplitude

In this section we promote our background fields to dynamical fields by giving them kinetic

terms. A convenient choice for these kinetic terms is

A'
kinetic = �

f̄2

6

Z
d4x

p
�bg bR, �

f̄2

6
⌘ �

f2

6
�M2r0, (5.1)

Ah
kinetic =

1

2̄2

Z
d4x

p
�g R,

1

2̄2
⌘

1

22
+

f2

6
. (5.2)

These kinetic terms preserve di↵eomorphism invariance. The kinetic term of the dilaton also

classically preserves Weyl invariance. Instead, the kinetic term of the graviton breaks Weyl

invariance at the Planck scale ̄�1. The IR action describing our dynamical background fields

is now given by9

A = AEFT +A'
kinetic +Ah

kinetic, (5.3)

where the e↵ective action is given by (2.14).

Let us write the dilaton kinetic term in terms of the '(x) fields explicitly

A'
kinetic = �M2r0

Z
d4x

p
�bg bR

+

Z
d4x

p
�g

"
�
1

2
gµ⌫@µ'@⌫'�

f2

6
R+

p
2f

6
R'�

1

12
R'2

#
(5.4)

and make several comments. The shifted coupling constant ̄ is used in the definition (5.2)

in order to e↵ectively remove the �f2

6 R term in (5.4) once it is summed up with the graviton

kinetic term in the combined action (5.3). The extra term proportional to r0M2 is introduced

in (5.1) in order to precisely cancel the r0M2 term in the invariant part of the e↵ective action

(2.12). This is done in order to slightly simplify the expressions in this section. It allows us

to e↵ectively set r0 = 0 in all the equations. In order to perform computations from now on

we also set the IR cosmological constant in the e↵ective action (2.12) to zero, namely � = 0.

This can be achieved by appropriately choosing the form of (2.6).

In this paper we focus for concreteness on the case of QFTs with explicit UV conformal

symmetry breaking which undergo a renormalization group flow. Our results, however, also

apply to the case of spontaneous symmetry breaking. Let us briefly explain why. In the case

of spontaneous symmetry breaking the dilaton is a physical particle and not simply a probe.

It is a Goldstone boson of the spontaneous conformal symmetry breaking. Its kinetic terms

is generated automatically and needs not to be added by hand. More precisely the kinetic

term for the physical dilaton is given by the r0M2 bR term in the e↵ective action (2.12).

The r0M2 is associated to the scale of the spontaneous conformal symmetry breaking f as

r0M2 = �
f2

6 . As a result the parameter r0 e↵ectively disappears from the discussion. Also,

in the spontaneous symmetry breaking case � is automatically zero. Finally, the di↵erence of

the UV and IR trace-anomalies should be interpreted according to the footnote 7.

9For a recent discussion on coupling of the dynamical gravity to classically scale invariant QFTs see [42].
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=

Weyl symmetry is broken in the Planck scale  with the 
decoupling limit:

κ−1

Now using the action (5.3) we can compute the graviton-dilaton scattering amplitude

Th'!h'(k1, k2, k3, k4; "1, "3). (5.5)

We require that our dilatons and gravitons are weakly coupled – this is enforced by the

“decoupling” limit

 ! 0, f ! 1,  ⌧
1

f
. (5.6)

The above limit means in practice that all the expressions should be first expanded in small

 keeping f finite and subsequently expanded in small 1/f . This limit also makes physical

sense, as we expect the dilaton decay constant f (if a dynamical dilaton exists in nature) to

be not larger than the Planck scale ̄�1.

One can foresee that the scattering amplitude computed using the action (5.3) at the

leading order 2 will contain “trivial” terms with no f dependence which come from the

kinetic terms (5.1) and (5.2). The non-trivial dependence on �a and �c will be uncovered

instead at the order 2f�2. Let us also recall the definition of the Mandelstam variables for

the scattering amplitude (5.5)

s ⌘ �(k1 + k2)
2, t ⌘ �(k1 � k3)

2, u ⌘ �(k1 � k4)
2. (5.7)

Since both the graviton and the dilaton particles are massless, we have the following constraint

s+ t+ u = 0. (5.8)

5.1 Propagators and Additional Vertices

In this subsection we summarize propagators and vertices following from the action (5.3).

As argued above, from now on, we set r0 = 0 and � = 0 in (5.1), (5.2), and (5.3) for the

computation below.

Two-point vertices and propagators Let us begin by examining the propagators and

2-point vertices in the theory described by the action (5.3). To do this, we expand the action

(5.3) up to quadratic order in the graviton-dilaton fields. The vertices and propagators

resulting from the sum of the kinetic terms (5.1) and (5.2) will be denoted by U and �

respectively. The vertices generated from the EFT action (2.14) will be referred to as blob

vertices and denoted by V .

The part of the action (5.3) which contains two dilatons reads as

A = �
1

2

Z
d4x@µ'(x)@

µ'(x) +
1

f2

Z
d4x

�
18r1@

2'@2'+ . . .
�
, (5.9)

where the ellipses above represents the remaining terms at order O(f�2) which contain higher

than four power of derivatives of the dilaton field. These terms will always be ignored from

now on. The first term of the above action will be used to derive the propagator for the
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A = Aφ
kinetic + Ah

kinetic + AEFT[τ, gμν] + ∑
1≤Δ≤2

λΔ ∫ d4x − ̂g M2−ΔR( ̂g ) ̂O Δ(x)

Compute scattering amplitudes for the given action:



Four dilaton amplitude

At leading order in decoupling limit:

𝒯φφ→φφ(s, t, u) =
Δa
f4

(s2 + t2 + u2) + ⋯

These restrictions can be chosen without loss of generality for the following reason: dif-

feomorphism invariance of the e↵ective action AEFT[⌦, gµ⌫ ] implies that under infinitesimal

coordinate transformations �xµ = �µ(x), the dilaton and the metric transform as

�' = ��⇢@⇢' (3.8)

�hµ⌫ = �
1

2
(@µ�⌫ + @⌫�µ)� (h⇢⌫@µ�

⇢ + hµ⇢@⌫�
⇢ + �⇢@⇢hµ⌫) , (3.9)

and together with (2.2), this allows us to remove the restrictions above.

For our purposes we will need to consider the following five vertices

V('''), V µ1⌫1
(h''), V(hh'), V(''''), V(hh''). (3.10)

Notice that all the vertices above, except for the second one, are contracted with polarizations.

This stresses the fact that for the computation of V µ1⌫1
(h'') we do not use (3.7). Below we provide

the diagrammatic notation for all the vertices (3.10).

V(''')(k1, k2, k3) =

k1

k2

k3

V µ1⌫1
(h'')(k1, k2, k3) = µ1⌫1

k1

k2

k3

V(hh')(k1, k2, k3; "1, "2) =

"1

"2

k1

k2

k3

V('''')(k1, k2, k3, k4) = k1

k2

k3

k4
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s = − (k1 + k2)2

t = − (k1 − k3)2

u = − (k1 − k4)2

s

•

4m2
•

�t� 4m2

Figure 1. The analytic structure of the amplitude T
�2
+2(s, t, u) on the s complex plane for a fixed

physical value of t. We draw the cuts associated with multi-particle states of a QFT with mass gap
m. In general, there are also poles associated with asymptotic single particle states but we do not
draw those to avoid cluttering the figure. If the IR theory is gapless then the cuts start from s = 0
and s = �t.

T
�2
+2(s, t, u) will have poles associated with single particle states and branch cuts associated

with the multi-particle continuum. The analytic structure of the amplitude T
�2
+2(s, t, u) is

presented in figure 1. The left cut appears at u = 4m2 due to the s� u crossing symmetry.

An e�cient way to derive dispersion relations for massless particles is by using the tech-

nology of [75], see appendix F in [76] for its compact review. Similar formalisms were also

proposed in [77, 78]. (In the case of massive particles the dispersion relations were discussed

in section 4 in [79].) Consider a scattering amplitude �(s, t, u) which is s � u invariant and

obeys lim|s|!1
1
s2�(s, t, u) = 0 for some fixed value of t.19 One can then write the following

relation

Res
s=0,�t

0

B@
�(s, t, u)

���
low energy

s2(s+ t)

1

CA =
1

⇡

Z 1

m2
ds

✓
1

s
+

1

s+ t

◆
Im�(s, t, u)

s(s+ t)
. (C.38)

Let us now set �(s, t, u) = T
�2
+2(s, t, u). Then using (C.36) we can evaluate the left-hand

side in the above equation, we get

Res
s=0,�t

0

B@
�(s, t, u)

���
low energy

s2(s+ t)

1

CA = 2g2 + (2g03 � 3g3)t+ . . . (C.39)

We immediately see that g02 disappears from this relation. Plugging this result into (C.38)

19This would follow from the Martin-Froissart bound [80, 81] for a QFT with a mass gap. It is also expected

in gravitational scattering as recently discussed in [82]. Neither of these results applies directly to our case

because we have massless particles but the gravitons and dilatons are just probes and therefore the non-

perturbative gravitational results of [82] do not apply. Tree-level gravitational interactions should obey the

classical Regge growth [43] which is weaker, namely lim|s|!1
1
s3
�(s, t, u) = 0. However, we expect the dilaton

scattering amplitudes to be softer at high energies due to the coupling to the trace of the stress tensor that

vanishes in the UV limit.
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XX

Dispersion relation with assumption  :lim
|s|→∞

𝒯φφ→φφ(s,0, − s)
s2

= 0

Δa = f 4 ∫s>0

ds
π

Im 𝒯φφ→φφ(s,0, − s)
s3

≥ 0 theorema−



Graviton-dilaton amplitude

At leading order in decoupling limit (order )κ2

The graviton-dilaton-graviton-dilaton vertex which follows from the sum of (5.1) and

(5.2) reads

U(h'h')(k1, k2,�k3,�k4; "1, "3) =

"1 "3

k1

k2

k3

k4

= i2
⇣ t

2
("1."3)� 4(k2."1."3.k4)� 4(k4."1."3.k2)

+
2

3
(k1."3."1.k3)

⌘
. (5.19)

The graviton-dilaton-graviton-dilaton vertex V(h'h') which follows from (2.14) was already

computed in (3.26) up to the fourth power in momentum. We write its explicit expression

here again. It reads

V(h'h')(k1, k2,�k3,�k4; "1, "3) =

"1 "3

k1

k2

k3

k4

=
i2

3f2

h �
3�c t2 + 3�a(s2 + u2)

�
⇥ ("1."3)� 12(��a+�c)t⇥ (k1."3."1.k3)

�24�a u⇥ (k2."3."1.k3) + 24�a s⇥ (k1."3."1.k2)� 24�a t⇥ (k2."3."1.k2)

+12(��a+�c)⇥ (k1."3.k1)(k3."1.k3) + (24�a+ 432r1)⇥ (k2."3.k2)(k3."1.k3)

+ (24�a+ 432r1)⇥ (k2."1.k2)(k1."3.k1) + 48�a⇥ (k3."1.k2)(k1."3.k2)

+864r1 ⇥ (k2."1.k2)(k2."3.k2) + 864r1 ⇥ (k2."1.k2)(k2."3.k1)

�864r1 ⇥ (k2."1.k3)(k2."3.k2)
i
. (5.20)

5.2 Graviton-Dilaton Amplitude

The leading order in 1/f graviton-dilaton amplitude (5.5) is given by the sum of the following

diagrams which contribute at order 2:

"1 "3

k1

k2

k3

k4

"1 "3

k1

k4

k3

k2
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"1 "3

k1

k2

k3

k4

"1 "3

k1

k3

k2

k4

These diagrams arise only from the kinetic terms and contain no information about the QFT

to which the graviton and dilaton couple. Evaluating these diagrams we obtain the following

expression

T
leading in 1/f
h'!h' (k1, k2, k3, k4; "1, "3)

= �42
✓
(k2."1.k2)(k4."3.k4)

s
+

(k4."1.k4)(k2."3.k2)

u

◆

+2 [t("1."3)� 4(k2."1."3.k4 + k4."1."3.k2)]

�
2

t

h1
2
("1."3)(s

2 + t2 + u2)� 4t(k2."1."3.k2) + 4s(k2."1."3.k1)

�4u(k3."1."3.k2) + 4(k3."1.k3)(k2."3.k2) + 4(k2."1.k2)(k1."3.k1)

+8(k3."1.k2)(k1."3.k2)
i
. (5.21)

The sub-leading order in 1/f of the amplitude is given by the sum of the following

diagrams, which contribute at order 2f�2 (additionally, we will consider only terms up to

fourth order in momentum):

"1 "3

k1

k2

k3

k4

"1 "3

k1

k2

k3

k4

"1 "3

k1

k2

k3

k4

"1 "3

k1

k4

k3

k2

"1 "3

k1

k4

k3

k2

"1 "3

k1

k4

k3

k2
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It does not probe RG flow, determined by the graviton-dilaton 
dynamics we provided.



Graviton-dilaton amplitude
At subleading order in decoupling limit (order )κ2f −2

"1 "3

k1

k2

k3

k4

"1 "3

k1

k3

k2

k4

These diagrams arise only from the kinetic terms and contain no information about the QFT

to which the graviton and dilaton couple. Evaluating these diagrams we obtain the following

expression

T
leading in 1/f
h'!h' (k1, k2, k3, k4; "1, "3)

= �42
✓
(k2."1.k2)(k4."3.k4)

s
+

(k4."1.k4)(k2."3.k2)

u

◆

+2 [t("1."3)� 4(k2."1."3.k4 + k4."1."3.k2)]

�
2

t

h1
2
("1."3)(s

2 + t2 + u2)� 4t(k2."1."3.k2) + 4s(k2."1."3.k1)

�4u(k3."1."3.k2) + 4(k3."1.k3)(k2."3.k2) + 4(k2."1.k2)(k1."3.k1)

+8(k3."1.k2)(k1."3.k2)
i
. (5.21)

The sub-leading order in 1/f of the amplitude is given by the sum of the following

diagrams, which contribute at order 2f�2 (additionally, we will consider only terms up to

fourth order in momentum):

"1 "3

k1

k2

k3

k4

"1 "3

k1

k2

k3

k4

"1 "3

k1

k2

k3

k4

"1 "3

k1

k4

k3

k2

"1 "3

k1

k4

k3

k2

"1 "3

k1

k4

k3

k2
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"1 "3

k1

k3

k2

k4

"1 "3

k1

k2

k3

k4

"1 "3

k1

k3

k2

k4

"1 "3

k1

k3

k2

k4

We enumerate these diagram from left to right and then from top to bottom. With this

convention let us compute them. We find that the first and the second diagrams are given by

iT1 =
�i

(k1 + k2)2 � i✏
"µ⌫1 V(h'')µ⌫(k1, k2,�k1 � k2)U

⇢�
(h'')(�k3, k1 + k2,�k4)"3⇢�

= �
144r1i2

f2
(k2."1.k2)(k4."3.k4)

= iT2. (5.22)

The third diagram is given by

iT3 =

✓
�i

(k1 + k2)2 � i✏

◆2

"1µ⌫U
µ⌫
(h'')(k1, k2,�k1 � k2)V('')(k1 + k2,�k1 � k2)

⇥ U⇢�
(h'')(�k3, k1 + k2,�k4)"3⇢�

= �iT2. (5.23)

Analogously for the fourth, fifth and sixth diagrams we find that

iT4 = iT5 = �iT6

= �
144r1i2

f2
(k4."1.k4)(k2."3.k2). (5.24)

The seventh diagram is given by

iT7 = Uµ⌫
(hhh)(k1,�k3,�k1 + k3; "1, "3)�

(h)
µ⌫,⇢�(k1 � k3)V

⇢�
(h'')(k1 � k3, k2,�k4)

= �
2i2�a

f2

h1
2
("1."3)(s

2 + t2 + u2)� 4t(k2."1."3.k2) + 4s(k2."1."3.k1)

�4u(k3."1."3.k2) + 4(k3."1.k3)(k2."3.k2) + 4(k2."1.k2)(k1."3.k1)

+8(k3."1.k2)(k1."3.k2)
i
. (5.25)

The eighth diagram is given by

iT8 = V(h'h')(k1, k2,�k3,�k4; "1, "3). (5.26)
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The ninth diagram is given by

iT9 = �
i2

3f3
�a t (3t("1."3)� 4(k1."3."1.k3)) . (5.27)

Finally, the tenth diagram is given by

iT10 =
i2

3f3
�a t (3t("1."3)� 4(k1."3."1.k3)) . (5.28)

To summarize, the sub-leading in 1/f graviton-dilaton amplitude reads as

T
sub-leading in 1/f
h'�!h' (k1, k2, k3, k4; "1, "3) =

10X

I=1

TI

=
2

f2
(�c��a)⇥

h
t2("1."3)� 4t(k1."3."1.k3) + 4(k1."3.k1)(k3."1.k3)

i
. (5.29)

Combining (5.21) and (5.29) we obtain the final expression for the graviton-dilaton scat-

tering amplitude

Th'�!h'(k1, k2, k3, k4; "1, "3) = T
leading in 1/f
h'�!h' (k1, k2, k3, k4; "1, "3)+

T
sub-leading in 1/f
h'�!h' (k1, k2, k3, k4; "1, "3) +O(3). (5.30)

Let us remind that in the computation of the amplitude above, we set the cosmological

constant (c.c.) � to zero in the invariant part of the EFT action (2.12). This is done for the

convenience of having scattering of massless particles and can always be achieved by tuning

the UV c.c. appropriately. It is not necessary in general.10 However, the physical content of

what we are doing can be rephrased as sending a graviton through the state created by the

energy-momentum tensor trace, and the massless dilaton is just a convenient choice for this

purpose.

The result of the 2-graviton-2-dilaton amplitude in (5.30) is not a↵ected by the potential

presence of interactions between the IR CFT operators and gravitons/dilatons as we show in

appendix B.

Linearized gauge invariance The amplitude (5.30) is invariant under linearized gauge

transformations

"µ⌫i (ki) ! "µ⌫i (ki) + �µk⌫i + �⌫kµi , (5.31)

where �µ(x) is some generic vector field with kiµ�µ=0. Consider the following object

(Hi)
µ⌫, ⇢�

⌘ kµi k
⇢
i "

⌫�
i (ki)� kµi k

�
i "

⌫⇢
i (ki)� k⌫i k

⇢
i "

µ�
i (ki) + k⌫i k

�
i "

µ⇢
i (ki). (5.32)

10If we do not set � to zero in (2.12), it e↵ectively provides mass to the dilaton at order M2

f

p
�. Now, once

we properly amputate the external dilatons in the computation of the scattering amplitude, the c.c. term only

contributes to the amplitude T +2
+2(s, t, u) in (5.34) at zeroth power in momenta and at order 2f�2 in the

decoupling limit.
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 dependence 
cancels out in the 
sum over diagrams

r1, λΔ



Graviton-dilaton amplitude

In COM frame:

𝒯+2
+2(s, t, u) = 𝒯−2

−2(s, t, u) = κ2 (1 −
6r0M2

f 2 ) su
t

𝒯−2
+2(s, t, u) = 𝒯+2

−2(s, t, u) =
κ2

f 2
(Δc − Δa) t2

Δc − Δa =
f2

κ2 ∫s>0

ds
π

Im ∂2
t 𝒯−2

+2(s,0, − s)
s

Dispersion relation with assumption  : lim
|s|→∞

∂2
t 𝒯−2

+2(s,0, − s) = 0

helicity flipping 
amplitude

 probes spinning massive states with partial wave spin (Δc − Δa) ≥ 2



S-matrix Bootstrap applications

Based on:
Karateev, Marucha, Penedones and B.S. 



Bootstrap Setup

m

m

m

m

m

m

'

'

'

'

'

'

Figure 1. The complete system of scattering amplitudes of the Z2 odd particle A with mass m and
the massless dilaton B.

We define non-perturbative couplings in terms of the physical scattering amplitude. In

this work we focus on

TAA!AA(s0, t0, u0), @2
sTAA!AA(s0, t0, u0), (1.2)

where (s0, t0, u0) is a point inside the Mandelstam triangle defined by 0  s0, t0, u0  4m2.

We will consider two choices. The first choice is the crossing symmetric point s0 = t0 = u0 =

4m2/3 which leads to the definition of the parameters �0 and �2, namely

�0 ⌘
1

32⇡
TAA!AA(4m

2/3, 4m2/3, 4m2/3),

�2 ⌘
1

32⇡
m4@2

sTAA!AA(4m
2/3, 4m2/3, 4m2/3).

(1.3)

The second choice is the “forward” point s0 = u0 = 2m2 and t = 0 which leads to the

definition of the parameters ⇤0 and ⇤2, namely

⇤0 ⌘
1

32⇡
TAA!AA(2m

2, 0, 2m2), ⇤2 ⌘
1

32⇡
m4@2

sTAA!AA(2m
2, 0, 2m2). (1.4)

Crossing, unitarity and analyticity put strong bounds on the above parameters. For

instance we found that4

�6 .�0 . +2.6613, 0  �2 . +2, (1.5)

�3 .⇤0 . +3, 0  ⇤2 . +0.7. (1.6)

The minimum of the a-anomaly as a function of the above parameters is given in figures 2 and

3. All consistent QFTs must live in the allowed region which we shaded in blue. We mark

the absolute minimum of the a-anomaly with a red dot in these figures. Our best numerical

estimate is

a/afree & 0.3 , (1.7)

with afree the a-anomaly of a free scalar field. We refer the reader to section 5 for a detailed

discussion of the numerical uncertainties of these results. We do not know if there is any 4d

QFT that saturates the lower bound (1.7). In fact, we do not know of any theory with an

a-anomaly smaller than afree. We conclude in section 6 with a discussion of open questions

and future work.
4These numerical bounds are a rough estimate based on our numerical results described in section 5. The

exception is the upper bound on �0 which can be determined quite precisely [3]. For the recent more detailed

study of these observables see [33].
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Set of amplitudes considered in the non-perturbative S-matrix bootstrap program:

energy 

0

(UV CFT + deformation)compensated

IR CFT(empty) + dilaton EFT

m
mass gap (  odd 

scalar particle)
ℤ2

(aUV, cUV)

(aIR = 0, cIR = 0)

Question: what is the 
minimum value of  ?aUV

𝒯mm→mm 𝒯mm→φφ 𝒯φφ→φφ



Bootstrap Setup

1. Map complex planes to three unit disks with complex 
coordinate  such that two particle branch cuts lie on the 
perimeters of unit discs.


2. Assuming Mandelstam analyticity and crossing property write 
down ansatz for all three amplitudes as a polynomial in  with 
unknown parameters.


3. Use double soft dilaton theorem constraint on the ansatz of 
 to fix some of the unknown parameters, and fix one 

parameter of  in terms of  to match the four dilaton EFT 
amplitude.


4. Use SDPB to impose unitarity on the partial wave amplitudes with 
the minimization demand on .

s, t, u−
ρs, ρt, ρu

ρs, ρt, ρu

𝒯mm→φφ
𝒯φφ→φφ Δa

Δa



−6.0253 ≤ λ0 ≤ + 2.6613
0 ≤ λ2 ≤ + 2.2568

(5760π2 aUV)

allowed 
region

Bootstrap bound on aUV

Free boson

Non-perturbative 
observables:

S-matrix bootstrap bounds:

aUV = 0

aUV = 0.32 afree

aUV = afree

aUV

Forbidden 
by unitarity

allowed in primal 
bootstrap

λ0 ≡
1

32π
𝒯mm→mm(4m2/3, 4m2/3, 4m2/3)

λ2 ≡
1

32π
m4∂2

s𝒯mm→mm(4m2/3, 4m2/3, 4m2/3)



Outlook for the future



In 4d CFT,  combination appears in various context


(1) Counting specific operators in supersymmetric theories (Pietro & 
Komargodski; Beem & Rastelli; Ardehali, Martone & Rossello ),
(2) Angular dependent part of the expectation value of the energy in the 
state produced by the current (Hofman & Maldacena),
(3) Counting spinning primary operators in the large central charge, 
strong coupling limit of CFTs (Camanho, Edelstein, Maldacena & 
Zhiboedov ),
(4) Logarithmic term in the entanglement entropy of Schwarzschild 
black hole (Solodukhin).

Can we thought of our  sum rule as an RG flow generalization in 
such scenarios?

(c − a)

UR(1)−

(Δc − Δa)

Connection with literatures

⟨Tμ
μ⟩g = (c − a)R2

μνρσ + 2(2c − a)R2
μν + ( c

3
− a) R2



S-matrix bootstrap application

If we combine our result   with the conformal collider 

bound   (Hofman & Maldacena), we find the following bound 

on the -anomaly value for the set of UV CFTs which only flow to a 
gapped QFT

aUV ≥ 0.32 afree
31
18

≥
a
c

≥
1
3

c

cUV ≥ 0.17 afree

Can this bound be improved by introducing graviton as another 
external probe in the S-matrix bootstrap setup we studied?



(Mis)matching of type-B anomaly in  SCFT ?𝒩 = 2

Niarchos, Papageorgakis, Pini & Pomoni 

Coupling space scale-anomaly involving integer dimension Coulomb branch 
operators between the unbroken phase and Higgs phase does NOT match 
in presence of non-trivial coulomb branch chiral ring in the IR. 

Using general arguments based on background field method we 
think it should match. Need to re-investigate using our proposal.



RG flow in six dimensions using scattering amplitudes ?

Elvang, Freedman, Hung, Kiermaier, Myers &Theisen 

Notice that all the vertices above, except for the second one, are contracted with polarizations.

This stresses the fact that for the computation of V µ1⌫1
(h'') we do not use (2.10). Below we

provide the diagrammatic notation for all the vertices (2.11).

V(''')(k1, k2, k3) =

k1

k2

k3

,

V µ1⌫1
(h'')(k1, k2, k3) = µ1⌫1

k1

k2

k3
,

V(hh')(k1, k2, k3; "1, "2) =

"1

"2

k1

k2

k3

V('''')(k1, k2, k3, k4) = k1

k2

k3

k4

V(hh'')(k1, k2, k3, k4; "1, "2) =

"1

"2

k1

k2

k3

k4

(2.12)

2.2 Computation of vertices

In this section we will compute the vertices (2.11) using the e↵ective action (1.16). The main

results of this section are given by equations (2.14), (2.16), (2.18), (2.22) and (2.26).

For the various vertices below, we choose restricted background configurations for the

metric and dilaton given by equations (2.6) and (2.7). This serves two purposes. First, one

obtains simpler formulas. Second, and more importantly, if there is a nontrivial infrared

CFT then it also contributes to the vertices we study. Our choice of the background fields

guarantees that the infrared CFT does not a↵ect the way the trace anomalies appear. This

is demonstrated in detail in appendix B.
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obtains simpler formulas. Second, and more importantly, if there is a nontrivial infrared

CFT then it also contributes to the vertices we study. Our choice of the background fields

guarantees that the infrared CFT does not a↵ect the way the trace anomalies appear. This

is demonstrated in detail in appendix B.
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Both the amplitudes probes  at six 
power in momenta, but vanish in the 
forward limit  probe only massive 
spinning states  No theorem!

Δa

⇒
⇒ a−

(Mis)matching of type-B anomaly in  SCFT ?𝒩 = 2

Niarchos, Papageorgakis, Pini & Pomoni 

Coupling space scale-anomaly involving integer dimension Coulomb branch 
operators between the unbroken phase and Higgs phase does NOT match 
in presence of non-trivial coulomb branch chiral ring in the IR. 

Using general arguments based on background field method we 
think it should match. Need to re-investigate using our proposal.



Thank You for 
your attention!


