Trace Anomalies, RG Flow and Scattering Amplitude

Biswajit Sahoo

ITMP seminar: February 14, 2024

Based on the papers

(1) arXiv: 2204.01786: Bootstrapping the a-anomaly in 4d QFTs, with Denis Karateev , Jan Marucha \& Joao Penedones.
(2) arXiv: 2312.09308: Trace Anomalies and the GravitonDilaton Amplitude, with Denis Karateev , Zohar Komargodski \& Joao Penedones.
(3) arXiv: 2402.xxxxx: Trace Anomalies in Perturbative Flows, with Denis Karateev.

Motivation

Why use scattering amplitude to study trace anomalies along renormalization group (RG) flow?

Quantum Field Theories (QFTs) can be non-perturbatively defined as a renormalization group flow between UV fixed point and IR fixed point which are assumed to enjoy conformal symmetry.

To specify a particular QFT it is sufficient to provide the UV CFT, and
(1) the relevant deformation triggering the RG flow in the explicit conformal symmetry breaking case,

> OR
(2) the VEV of the scalar primary operator in the spontaneous symmetry breaking case.

We can non-perturbatively study:
the UV fixed point using conformal bootstrap program, (to put bounds on the allowed values of scaling dimensions, OPE coefficients,...) and
the scattering amplitudes of light d.o.f. near IR fixed point using
S-matrix bootstrap program.
(to bound ratios of masses of stable particles, coupling constants, EFT parameters,...)

the UV fixed point using conformal bootstrap program, (to put bounds on the allowed values of scaling dimensions, OPE coefficients,...) and
the scattering amplitudes of light d.o.f. near IR fixed point using S-matrix bootstrap program.

Questions we like to ask: Can we identify a set of observables which are determined by the UV CFT and IR CFT data, and do not depend on the details of the RG flow ("protected")?

Then the CFT datas can be used as parameters of both the conformal and S-matrix bootstrap to derive non-perturbative bounds.

Questions we like to ask: Can we identify a set of observables which are determined by the UV CFT and IR CFT data, and do not depend on the details of the RG flow ("protected")?

Then the CFT datas can be used as parameters of both the conformal and S-matrix bootstrap to derive non-perturbative bounds.

The answer we provide: Introduce two background fields \rightarrow dilaton and graviton.

Dilaton compensate explicit conformal symmetry breaking near UV (or the Goldstone boson of SSB)

Graviton is the quanta of background metric (after providing dynamics) introduced such that the QFT in the curved background in classically Weyl invariant.

The answer we provide: Introduce two background fields \rightarrow dilaton and graviton.

Dilaton compensate explicit conformal symmetry breaking near UV (or the Goldstone boson of SSB)

Graviton is the quanta of background metric (after providing dynamics) introduced such that the QFT in the curved background in classically Weyl invariant.

The ' a ' and ' c ' are trace/Weyl anomaly coefficients of CFT determined in terms of OPE coefficients of stress tensor correlation function.

Applications in 4d

Derived lower bound on $a_{U V}$ in the space of CFTs which can flow to a gapped QFT

Applications in 4d

Derived lower bound on $a_{U V}$ in the space of CFTs which can flow to a gapped QFT

Shown how $(\Delta c-\Delta a)$ is related to the massive spinning states of the QFT

Outline of the seminar

- Trace anomalies in CFT
- Proposal of background field method to probe trace anomalies along RG flow
- Testing the proposal in QFTs: free massive scalar and Dirac fermion, weakly relevant flow
- Dilaton-Dilaton and Graviton-Dilaton scattering amplitudes
- S-matrix Bootstrap applications
- Outlook for future

Trace anomalies in CFT

CFT in curved spacetime and trace anomaly

CFT conformally coupled to background geometry \rightarrow Invariant under Weyl transformation
$\begin{aligned} \text { Weyl transformations: } & g_{\mu \nu}(x) \rightarrow e_{\sim}^{2 \sigma(x)} g_{\mu \nu}(x) \\ & \text { Parameter of Weyl transformation }\end{aligned}$

CFT in curved spacetime and trace anomaly

CFT conformally coupled to background geometry
 Invariant under Weyl transformation

$\begin{aligned} \text { Weyl transformations: } & g_{\mu \nu}(x) \rightarrow e^{2 \sigma(x)} g_{\mu \nu}(x) \\ & \text { Parameter of Weyl transformation }\end{aligned}$

Connected functional

$$
e^{\left.\frac{\downarrow}{i\left[\|\left[g_{\mu \nu}\right]\right.}\right]}=Z\left[g_{\mu \nu}\right] \equiv \int[d \phi]_{g} e^{i A^{g}\left[\phi, g_{\mu \nu}\right]}
$$

Trace anomaly

$$
\delta_{W} W\left[g_{\mu \nu}\right]=\int d^{4} x \sqrt{-g} \sigma(x)\langle 0| T_{\mu}^{\mu}(x)|0\rangle_{g}=\int d^{4} x \sqrt{-g} \sigma(x)\left(-a \times E_{4}+c \times \mathscr{W}^{2}\right)
$$

' a ' and ' c ' as OPE coefficients

In flat background:

$$
\partial_{\mu} T^{\mu \nu}(x)=0 \quad T_{\mu}^{\mu}(x)=0
$$

Two and three point correlators:

$$
\begin{aligned}
& \langle 0| T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)|0\rangle=\frac{C_{T}}{x_{12}^{8}} \times \mathbf{T}_{0}^{\mu \nu ; \rho \sigma} \text { Central charge } \\
& \langle 0| T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right) T^{\alpha \beta}\left(x_{3}\right)|0\rangle=\frac{1}{x_{12}^{4} x_{23}^{4} x_{31}^{4}}\left(\widehat{\left.\mathbb{A} \mathbf{T}_{1}^{\mu \nu ; \rho \sigma ; \alpha \beta}+\mathbb{B} \mathbf{T}_{2}^{\mu \nu ; \rho \sigma ; \alpha \beta}+\mathbb{C} \mathbf{T}_{3}^{\mu \nu ; \rho \sigma ; \alpha \beta}\right)}\right. \text { OPE coefficients }
\end{aligned}
$$

$-\mathbf{T}_{I}$ for $I=0,1,2,3$ are known tensor structures.
a and c anomalies in terms of central charge and OPE coefficients :

$$
a \equiv \frac{\pi^{4}}{64 \times 90}(9 \mathbb{A}-2 \mathbb{B}-10 \mathbb{C}) \quad c \equiv \frac{\pi^{4}}{64 \times 30}(14 \mathbb{A}-2 \mathbb{B}-5 \mathbb{C})=\frac{\pi^{2}}{64 \times 10} C_{T}
$$

Proposal of background field method to probe trace anomalies along RG flow

Dilaton as a conformal compensator

$A_{\mathrm{QFT}}\left[\phi, g_{\mu \nu}\right]=A_{\mathrm{UV}} \mathrm{CFT}\left[\phi, g_{\mu \nu}\right]+A_{\text {deformation }}\left(M_{i}\right)$
$A_{\text {deformation }}\left(M_{i}\right)=\sum_{i} \int d^{4} x \sqrt{-g}\left(\lambda_{i} M_{i}^{4-\Delta_{i}} \mathcal{O}_{i}(x)\right) \quad \Delta_{i}<4$
Weyl symmetry is explicitly broken due to $A_{\text {deformation }}$ which triggers the RG flow

$$
T^{\mu}{ }_{\mu}(x)=\sum_{i} \lambda_{i}\left(4-\Delta_{i}\right) M_{i}^{4-\Delta_{i}} \widehat{O}_{i}(x)
$$

Dilaton as a conformal compensator

Restore the Weyl symmetry by introducing a compensator field $\Omega(x)$ and scaling all the mass parameters $M_{i} \rightarrow M_{i}(x) \equiv \Omega(x) M_{i}$
$A_{\text {QFT }}^{\text {compensated }}\left[\phi, g_{\mu \nu}, \Omega\right]=A_{\mathrm{UV} \operatorname{CFT}}\left[\phi, g_{\mu \nu}\right]+A_{\text {deformation }}^{\text {compensated }}\left(M_{i}\right)$
$A_{\text {deformation }}^{\text {compensated }}\left(M_{i}\right)=\sum_{i} \int d^{4} x \sqrt{-g} \lambda_{i}\left(M_{i} \Omega(x)\right)^{4-\Delta_{i}} \mathcal{O}_{i}(x)$
Under Weyl transformation $\Omega(x) \rightarrow e^{-\sigma(x)} \Omega(x) . \quad$ source for $T_{\mu}^{\mu}(x)$
$\Omega(x)=e^{-\tau(x)}$, where $\tau(x)$ is the dilaton field under Weyl transformation : $\tau(x) \rightarrow \tau(x)+\sigma(x)$

Trace anomaly in compensated QFT

$\delta_{W} W\left[g_{\mu \nu}, \Omega\right]=\int d^{4} x \sqrt{-g} \sigma(x)\left(-a_{U V} \times E_{4}+c_{U V} \times \mathscr{W}^{2}+\mathscr{A}_{\text {coupling space }}\right)$
$\mathscr{A}_{\text {coupling space }}=\sum_{i} \mathbf{c}_{i}^{U V} M_{i}^{8-2 \Delta_{i}} \Omega(x)^{4-\Delta_{i}}\left(\square^{\Delta_{i}-2}+\ldots\right) \Omega(x)^{4-\Delta_{i}}$
Extra scale anomaly for integer dimension
operators, won't be discussed in this talk

Trace anomaly matching and graviton-dilaton EFT

$$
A_{I R}\left[\Phi, g_{\mu \nu}, \tau\right]=A_{I R C F T}\left[\Phi, g_{\mu \nu}\right]+A_{E F T}\left[\tau, g_{\mu \nu}\right]+\sum_{1 \leq \Delta \leq 2} \lambda_{\Delta} \int d^{4} x \sqrt{-\widehat{g}} M^{2-\Delta} R(\widehat{g}) \widehat{\mathbf{O}}_{\Delta}(x)
$$

+ irrelevant terms

$$
\hat{\boldsymbol{g}}_{\mu \nu}(x) \equiv e^{-2 \tau(x)} g_{\mu \nu}(x) \quad \widehat{\mathbf{O}}_{\Delta}(x) \equiv e^{\Delta \tau(x)} \mathbf{O}(x)
$$

$$
\begin{gathered}
\delta_{W} W\left[g_{\mu \nu}, \Omega\right]=\int d^{4} x \sqrt{-g} \sigma(x)\left(-a_{U V} \times E_{4}+c_{U V} \times \mathscr{W}^{2}\right) \\
\delta_{W} A_{E F T}\left[g_{\mu \nu}, \tau\right]=\int d^{4} x \sqrt{-g} \sigma(x)\left(-\Delta a \times E_{4}+\Delta c \times \mathscr{W}^{2}\right)
\end{gathered}
$$

$$
\Delta a \equiv a_{U V}-a_{I R} \quad \text { and } \quad \Delta c \equiv c_{U V}-c_{I R}
$$

Trace anomaly matching and graviton-dilaton EFT

$$
A_{I R}\left[\Phi, g_{\mu \nu}, \tau\right]=A_{I R C F T}\left[\Phi, g_{\mu \nu}\right]+A_{E F T}\left[\tau, g_{\mu \nu}\right]+\sum_{1 \leq \Delta \leq 2} \lambda_{\Delta} \int d^{4} x \sqrt{-\widehat{g}} M^{2-\Delta} R(\widehat{g}) \widehat{\mathbf{O}}_{\Delta}(x)
$$

+ irrelevant terms

$$
\widehat{g}_{\mu \nu}(x) \equiv e^{-2 \tau(x)} g_{\mu \nu}(x) \quad \widehat{\mathbf{O}}_{\Delta}(x) \equiv e^{\Delta \tau(x)} \mathbf{O}(x)
$$

Solution

$A_{E F T}\left[\tau, g_{\mu \nu}\right]=-\Delta a \times A_{a}\left[\tau, g_{\mu \nu}\right]+\Delta c \times A_{c}\left[\tau, g_{\mu \nu}\right]+A_{\text {invariant }}\left[\hat{g}_{\mu \nu}\right]$

$$
\begin{aligned}
A_{a}\left[\tau, g_{\mu \nu}\right] & =\int d^{4} x \sqrt{-g}\left(\tau E_{4}+4\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right) \partial_{\mu} \tau \partial_{\nu} \tau+2(\partial \tau)^{4}-4(\partial \tau)^{2} \square \tau\right) \\
A_{c}\left[\tau, g_{\mu \nu}\right] & =\int d^{4} x \sqrt{-g} \tau \mathscr{W}^{2} \\
A_{\text {invariant }}\left[\widehat{g}_{\mu \nu}\right] & =\int d^{4} x \sqrt{-\widehat{g}}\left(M^{4} \lambda+M^{2} r_{0} \widehat{R}+r_{1} \widehat{R}^{2}+r_{2} \widehat{W}^{2}+r_{3} \widehat{E}_{4}\right)
\end{aligned}
$$

Vertices to probe anomaly coefficients

3-dilaton and 1-graviton-2-dilaton vertices

$$
\left(\partial_{k_{2 u}}-\partial_{k_{3 u}}\right)^{2} \vec{\partial}_{k_{2}} \cdot \vec{\partial}_{k_{3}} V_{(h \varphi \varphi)}^{u u}
$$

$$
\begin{aligned}
& V_{(\varphi \varphi \varphi)}\left(k_{1}, k_{2}, k_{3}\right)=\stackrel{k_{1}}{\substack{k_{3}}} \\
& =\frac{i \sqrt{2}}{f^{3}}\left(\Delta a\left(\left(k_{1}^{2}\right)^{2}+\left(k_{2}^{2}\right)^{2}+\left(k_{3}^{2}\right)^{2}\right)\right. \\
& \left.+2\left(18 r_{1}-\Delta a\right)\left(k_{1}^{2} k_{2}^{2}+k_{2}^{2} k_{3}^{2}+k_{3}^{2} k_{1}^{2}\right)+\ldots\right) \\
& V_{(h \varphi \varphi)}^{\mu_{1} \nu_{1}}\left(k_{1}, k_{2}, k_{3}\right)=\mu_{1} \nu_{1} \\
& \xrightarrow[k_{1}]{\sim} \\
& =\frac{i \kappa}{f^{2}} \eta^{\mu \nu}\left[-12 r_{1} k_{1}^{2} k_{1} \cdot k_{2}+\left(2 \Delta a-12 r_{1}\right) k_{1}^{2} k_{2}^{2}+36 r_{1}\left(k_{2}^{2}\right)^{2}-6 r_{1}\left(k_{1}^{2}\right)^{2}\right] \\
& -\frac{i \kappa}{f^{2}} k_{2}^{\mu} k_{2}^{\nu}\left[\left(4 \Delta a+72 r_{1}\right) k_{1}^{2}+144 r_{1}\left(k_{2}^{2}+k_{1} \cdot k_{2}\right)\right]
\end{aligned}
$$

graviton=graviton=dilaton vertex

at four power in momenta:

$$
\begin{aligned}
f_{1}\left(k_{1}, k_{2}\right)= & \frac{4 i \kappa^{2}}{\sqrt{2} f}\left(2\left(-\Delta a+\Delta c+18 r_{1}\right)\left(k_{1} \cdot k_{2}\right)^{2}+\left(2 \Delta a-\Delta c+24 r_{1}\right) k_{1}^{2} k_{2}^{2}\right. \\
& \left.+12 r_{1}\left(k_{1}^{4}+k_{2}^{4}\right)+42 r_{1}\left(k_{1} \cdot k_{2}\right)\left(k_{1}^{2}+k_{2}^{2}\right)\right) \\
f_{2}\left(k_{1}, k_{2}\right)= & \frac{8 i \kappa^{2}}{\sqrt{2} f}(-\Delta a+\Delta c) \\
f_{3}\left(k_{1}, k_{2}\right)= & \frac{8 i \kappa^{2}}{\sqrt{2} f}\left(2\left(\Delta a-\Delta c-6 r_{1}\right)\left(k_{1} \cdot k_{2}\right)-6 r_{1}\left(k_{1}^{2}+k_{2}^{2}\right)\right)
\end{aligned}
$$

Testing the proposal in QFTs

Example I: Free massive scalar

Example I: Free massive scalar

$$
\begin{array}{r}
A_{Q F T}^{\text {compensated }}\left[\Phi, g_{\mu \nu}, \tau\right]=\int d^{d} x \sqrt{-g}\left(\left[\frac{1}{2} g^{\mu \nu} \partial_{\mu} \Phi \partial_{\nu} \Phi-\frac{d-2}{8(d-1)} R \Phi^{2}-\frac{1}{2} m^{2} e^{-2 \tau} \Phi^{2}\right)\right. \\
\begin{array}{l}
\text { conformally coupled } \\
\text { to background metric }
\end{array} \\
\begin{array}{l}
\text { compensation of } \\
\text { explicit breaking }
\end{array} \\
\hline
\end{array}
$$

Low energy expansion:

$$
\begin{aligned}
& f_{1}\left(k_{1}, k_{2}\right)=\frac{i \kappa^{2}}{1440 \sqrt{2} \pi^{2} f}\left(2\left(k_{1}^{2}\right)^{2}+2\left(k_{2}^{2}\right)^{2}+10\left(k_{1} \cdot k_{2}\right)^{2}+7 k_{1} \cdot k_{2}\left(k_{1}^{2}+k_{2}^{2}\right)+3 k_{1}^{2} k_{2}^{2}\right) \\
& f_{2}\left(k_{1}, k_{2}\right)=+\frac{i \kappa^{2}}{360 \sqrt{2} \pi^{2} f} \\
& f_{3}\left(k_{1}, k_{2}\right)=-\frac{i \kappa^{2}}{720 \sqrt{2} \pi^{2} f}\left(k_{1}^{2}+k_{2}^{2}+6\left(k_{1} \cdot k_{2}\right)\right) \\
& \Delta a=\frac{1}{5760 \pi^{2}}, \quad \Delta c=3 \Delta a, \quad r_{1}=\frac{\Delta a}{6}
\end{aligned}
$$

Example II: Free massive Dirac fermion

$\left.A_{Q F T}^{\text {compensated }}\left[\Psi, g_{\mu \nu}, \tau\right]=\int d^{d} x \sqrt{-g} \bar{\Psi}(x)\left(i \gamma^{a} E_{a}^{\mu} D_{\mu}-m e^{-\tau(x)}\right)\right) \Psi(x)$

Low energy expansion:

$$
\begin{aligned}
& V_{(h h \varphi)}\left(k_{1}, k_{2}, k_{3} ; \varepsilon_{1}, \varepsilon_{2}\right) \\
= & \frac{i \kappa^{2}}{720 \sqrt{2} \pi^{2} f}\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)\left\{14 k_{1}^{2} k_{2}^{2}+6\left(\left(k_{1}^{2}\right)^{2}+\left(k_{2}^{2}\right)^{2}\right)+25\left(k_{1} \cdot k_{2}\right)^{2}+21 k_{1} \cdot k_{2}\left(k_{1}^{2}+k_{2}^{2}\right)\right\}\right. \\
& \left.-\left(k_{2} \cdot \varepsilon_{1} \cdot \varepsilon_{2} \cdot k_{1}\right)\left\{6\left(k_{1}^{2}+k_{2}^{2}\right)+26 k_{1} \cdot k_{2}\right\}+7\left(k_{2} \cdot \varepsilon_{1} \cdot k_{2}\right)\left(k_{1} \cdot \varepsilon_{2} \cdot k_{1}\right)\right]
\end{aligned}
$$

$$
\Delta a=\frac{11}{5760 \pi^{2}}, \quad \Delta c=\frac{18}{5760 \pi^{2}}, \quad r_{1}=\frac{1}{5760 \pi^{2}}
$$

Example III: weakly relevant flow

Example |II: weakly relevant flow
 (Introducing background fields in 4d Euclidean QFT)

$A_{\mathrm{QFT}}^{\mathrm{Compensated}}=A_{\mathrm{UV} \mathrm{CFT}}\left[\phi, g_{\mu \nu}\right]+\lambda_{0} \int d^{4} x \sqrt{-g}\left(m_{0} \Omega(x)\right)^{\delta} \mathcal{O}_{g}(x)$
$A_{\mathrm{UV} \mathrm{CFT}}+\kappa \int d^{4} x h_{\mu \nu}(x) T^{\mu \nu} x+O\left(\kappa^{2}\right) \quad \Omega(x)=1-\frac{\varphi(x)}{\sqrt{2} f}$

In the renormalized theory it demands: $\quad \mu^{\delta} \lambda(\mu) \longrightarrow \mu^{\delta} \lambda\left(\Omega(x)^{-1} \mu\right)$

$$
\lambda\left(\Omega(x)^{-1} \mu\right)=\lambda(\mu)+\frac{1}{\sqrt{2} f} \varphi(x) \beta(\lambda)+O\left(f^{-2}\right)
$$

Example III: weakly relevant flow

$A_{\text {OFT }}^{\text {compensated }}=A_{\mathrm{UV} \mathrm{CFT}}\left[\phi, g_{\mu \nu}\right]+\lambda_{0} \int d^{4} x \sqrt{g}\left(m_{0} \Omega(x)\right)^{\delta} \mathcal{O}_{g}(x)$

$$
\begin{aligned}
& A_{\mathrm{EFT}}[\varphi, h]=-\log \int[d \phi]_{g} e^{-A_{\mathrm{AFT}} \mathrm{COmpensateq}} \\
& \begin{aligned}
& A_{\mathrm{EFT}}[\varphi, h]=-\frac{1}{4 \sqrt{2} f^{\delta}} \delta^{2}\left(m_{0}^{\delta} \lambda_{0}\right)^{2} \int d^{d} x_{1} \int d^{d} x_{2} \varphi\left(x_{2}\right)^{2} \varphi\left(x_{1}\right) \\
& \times\left\langle\mathcal{O}\left(x_{12}\right) \mathcal{O}(0)\right\rangle_{\mathrm{QFT}}
\end{aligned} \rightarrow V_{(\varphi \varphi \varphi)}
\end{aligned}
$$

$$
\begin{aligned}
& A_{\mathrm{EFT}}[\varphi, h]=\frac{\kappa^{2}}{2 \sqrt{2} f}\left(\delta m_{0}^{\delta} \lambda_{0}\right) \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} h_{\mu \nu}\left(x_{1}\right) h_{\rho \sigma}\left(x_{2}\right) \varphi\left(x_{3}\right) \\
& \times\left\langle T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right)\right\rangle_{\mathrm{QFT}}
\end{aligned}
$$

Example III: weakly relevant flow

(computation of Δa)

Four derivative part of the relevant EFT action:

Example III: weakly relevant flow

(computation of Δc)

conformal perturbation theory

$$
\left\langle\mathbf{T}^{\mu \nu}\left(x_{1}\right) \mathbf{T}^{\rho \sigma}\left(x_{2}\right)\right\rangle_{\mathrm{QFT}}=\left\langle T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)\right\rangle_{\mathrm{UV} \mathrm{CFT}}
$$

$$
-m_{0}^{\delta} \lambda_{0} \int d^{d} x_{3}\left\langle T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right)\right\rangle_{\mathrm{UV} \mathrm{CFT}}+O\left(\lambda_{0}^{2}\right)
$$

Computation at IR fixed point

$$
\begin{aligned}
& \frac{640}{\pi^{2}} \times c_{U V} \\
&\left\langle T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right)\right\rangle\left.=C_{T}\right] \times \frac{\mathcal{I}^{\mu \nu, \rho \sigma}\left(x_{12}\right)}{\left(x_{12}^{2}\right)^{d}}, \\
&\left\langle T^{\mu \nu}\left(x_{1}\right) T^{\rho \sigma}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right)\right\rangle=C_{T T \mathcal{O}} \times \frac{\mathcal{I}^{\mu \nu, \alpha \beta}\left(x_{13}\right) \mathcal{I}^{\rho \sigma, \gamma \delta}\left(x_{23}\right) t_{\alpha \beta, \gamma \delta}\left(X_{12}\right)}{\left(x_{12}^{2}\right)^{\frac{2 d-\Delta}{2}}\left(x_{23}^{2}\right)^{\frac{\Delta}{2}}\left(x_{31}^{2}\right)^{\frac{\Delta}{2}}}
\end{aligned}
$$

$$
\Delta c=\frac{\pi^{2}}{2304} \frac{C_{T T O}}{C_{\mathcal{O O O}}} \delta \longleftarrow\left[\begin{array}{l}
\text { Compute } V_{(h h \varphi)} \\
\text { Four derivative } \\
\text { part of } A_{\mathrm{EFT}}(\varphi, h) \\
\text { involving }\langle T T \mathcal{O}\rangle
\end{array}\right.
$$

Dilaton-Dilaton and Graviton-Dilaton scattering amplitudes

Providing dynamics to graviton and dilaton

$$
\begin{aligned}
A_{\text {kinetic }}^{\varphi} & =-\frac{f^{2}}{6} \int d^{4} x \sqrt{-\hat{g}} R(\widehat{g}) \\
& =\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi-\frac{f^{2}}{6} R+\frac{\sqrt{2} f}{6} R \varphi-\frac{1}{12} R \varphi^{2}\right] \\
A_{\text {kinetic }}^{h} & =\left(\frac{1}{2 \kappa^{2}}+\frac{f^{2}}{6}\right) \int d^{4} x \sqrt{-g} R
\end{aligned}
$$

Weyl symmetry is broken in the Planck scale κ^{-1} with the decoupling limit: $\quad \kappa \rightarrow 0, \quad f \rightarrow \infty, \quad \kappa \ll \frac{1}{f}$.

Compute scattering amplitudes for the given action:

$$
A=A_{\text {kinetic }}^{\varphi}+A_{\text {kinetic }}^{h}+A_{E F T}\left[\tau, g_{\mu \nu}\right]+\sum_{1 \leq \Delta \leq 2} \lambda_{\Delta} \int d^{4} x \sqrt{-\hat{g}} M^{2-\Delta} R(\widehat{g}) \widehat{\mathbf{O}}_{\Delta}(x)
$$

Four dilaton amplitude

At leading order in decoupling limit:

$\mathscr{T}_{\varphi \varphi \rightarrow \varphi \varphi}(s, t, u)=\frac{\Delta a}{f^{4}}\left(s^{2}+t^{2}+u^{2}\right)+\cdots$

$$
\begin{aligned}
& s=-\left(k_{1}+k_{2}\right)^{2} \\
& t=-\left(k_{1}-k_{3}\right)^{2} \\
& u=-\left(k_{1}-k_{4}\right)^{2}
\end{aligned}
$$

Dispersion relation with assumption $\lim _{|s| \rightarrow \infty} \frac{\mathscr{T}_{\varphi \varphi \rightarrow-\phi \varphi}(s, 0,-s)}{s^{2}}=0$:

$$
\Delta a=f^{4} \int_{s>} \frac{d s}{\pi} \frac{\lim \mathscr{J}_{\varphi \varphi \rightarrow \varphi \varphi}(s, 0,-s)}{s^{3}} \geq 0 \quad a \text {-theorem }
$$

Graviton-dilaton amplitude

At leading order in decoupling limit (order κ^{2})

It does not probe RG flow, determined by the graviton-dilaton dynamics we provided.

Graviton-dilaton amplitude

At subleading order in decoupling limit (order $\kappa^{2} f^{-2}$)

r_{1}, λ_{Δ} dependence cancels out in the sum over diagrams

$$
\begin{aligned}
& \mathcal{T}_{h \varphi \longrightarrow h \varphi}^{\text {sub-leading in } 1 / f}\left(k_{1}, k_{2}, k_{3}, k_{4} ; \varepsilon_{1}, \varepsilon_{3}\right)=\sum_{I=1}^{10} \mathcal{T}_{I} \\
= & \frac{\kappa^{2}}{f^{2}}(\Delta c-\Delta a) \times\left[t^{2}\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)-4 t\left(k_{1} \cdot \varepsilon_{3} \cdot \varepsilon_{1} \cdot k_{3}\right)+4\left(k_{1} \cdot \varepsilon_{3} \cdot k_{1}\right)\left(k_{3} \cdot \varepsilon_{1} \cdot k_{3}\right)\right]
\end{aligned}
$$

Graviton-dilaton amplitude

In COM frame:

$$
\begin{aligned}
& \mathscr{T}_{+2}^{+2}(s, t, u)=\mathscr{T}_{-2}^{-2}(s, t, u)=\kappa^{2}\left(1-\frac{6 r_{0} M^{2}}{f^{2}}\right) \frac{s u}{t} \\
& \mathscr{T}_{+2}^{-2}(s, t, u)=\mathscr{T}_{-2}^{+2}(s, t, u)=\frac{\kappa^{2}}{f^{2}}(\Delta c-\Delta a) t^{2}
\end{aligned}
$$

Dispersion relation with assumption $\lim _{|s| \rightarrow \infty} \partial_{t}^{2} \mathscr{T}_{+2}^{-2}(s, 0,-s)=0$:

$$
\Delta c-\Delta a=\frac{f^{2}}{\kappa^{2}} \int_{s>0} \frac{d s}{\pi} \frac{\operatorname{Im} \partial_{t}^{2} \mathscr{T}_{+2}^{-2}(s, 0,-s)}{s}
$$

helicity flipping
amplitude

- $(\Delta c-\Delta a)$ probes spinning massive states with partial wave spin ≥ 2

S-matrix Bootstrap applications

Bootstrap Setup

Set of amplitudes considered in the non-perturbative S-matrix bootstrap program:

$\mathscr{F}_{m m \rightarrow m m}$

$\widetilde{F}_{\mathrm{m}}^{\boldsymbol{T}} \rightarrow \varphi \varphi$

$\int_{\varphi \varphi} \varphi \varphi \varphi$

Bootstrap Setup

1. Map complex s, t, u-planes to three unit disks with complex coordinate $\rho_{s}, \rho_{t}, \rho_{u}$ such that two particle branch cuts lie on the perimeters of unit discs.
2. Assuming Mandelstam analyticity and crossing property write down ansatz for all three amplitudes as a polynomial in $\rho_{s}, \rho_{t}, \rho_{u}$ with unknown parameters.
3. Use double soft dilaton theorem constraint on the ansatz of $\mathscr{T}_{m m \rightarrow \varphi \varphi}$ to fix some of the unknown parameters, and fix one parameter of $\mathscr{T}_{\varphi \varphi \rightarrow \varphi \varphi}$ in terms of Δa to match the four dilaton EFT amplitude.
4. Use SDPB to impose unitarity on the partial wave amplitudes with the minimization demand on Δa.

Bootstrap bound on $a_{U V}$

Non-perturbative observables:

$$
\begin{aligned}
& \lambda_{0} \equiv \frac{1}{32 \pi} \mathscr{T}_{m m \rightarrow m m}\left(4 m^{2} / 3,4 m^{2} / 3,4 m^{2} / 3\right) \\
& \lambda_{2} \equiv \frac{1}{32 \pi} m^{4} \partial_{s}^{2} \mathscr{T}_{m m \rightarrow m m}\left(4 m^{2} / 3,4 m^{2} / 3,4 m^{2} / 3\right)
\end{aligned}
$$

S-matrix bootstrap bounds: $\begin{aligned}-6.0253 & \leq \lambda_{0} \leq+2.6613 \\ 0 & \leq \lambda_{2} \leq+2.2568\end{aligned}$

Outlook for the future

Connection with literatures

In 4d CFT, $(c-a)$ combination appears in various context
(I) Counting specific operators in supersymmetric theories (Pietro \& Komargodski; Beem \& Rastelli; Ardehali, Martone \& Rossello),
(2) Angular dependent part of the expectation value of the energy in the state produced by the $U_{R}(1)-$ current (Hofman \& Maldacena),
(3) Counting spinning primary operators in the large central charge, strong coupling limit of CFTs (Camanho, Edelstein, Maldacena \& Zhiboedov),
(4) Logarithmic term in the entanglement entropy of Schwarzschild black hole (Solodukhin).

$$
\left.T_{\mu}^{\mu}\right\rangle_{g}=(c-a) R_{\mu \nu \sigma}^{2}+2(2 c-a) R_{\mu \nu}^{2}+\left(\frac{c}{3}-a\right) R^{2}
$$

Can we thought of our $(\Delta c-\Delta a)$ sum rule as an RG flow generalization in such scenarios?

S-matrix bootstrap application

If we combine our result $a_{U V} \geq 0.32 a_{\text {free }}$ with the conformal collider bound $\frac{31}{18} \geq \frac{a}{c} \geq \frac{1}{3}$ (Hofman \& Maldacena), we find the following bound on the c-anomaly value for the set of UV CFTs which only flow to a gapped QFT

$$
c_{U V} \geq 0.17 a_{\text {free }}
$$

Can this bound be improved by introducing graviton as another external probe in the S-matrix bootstrap setup we studied?

(Mis)matching of type-B anomaly in $\mathcal{N}=2$ SCFT?

Niarchos, Papageorgakis, Pini \& Pomoni
Coupling space scale-anomaly involving integer dimension Coulomb branch operators between the unbroken phase and Higgs phase does NOT match in presence of non-trivial coulomb branch chiral ring in the IR.

Using general arguments based on background field method we think it should match. Need to re-investigate using our proposal.

(Mis)matching of type-B anomaly in $\mathcal{N}=2$ SCFT?

Niarchos, Papageorgakis, Pini \& Pomoni
Coupling space scale-anomaly involving integer dimension Coulomb branch operators between the unbroken phase and Higgs phase does NOT match in presence of non-trivial coulomb branch chiral ring in the IR.

Using general arguments based on background field method we think it should match. Need to re-investigate using our proposal.

RG flow in six dimensions using scattering amplitudes?

Elvang, Freedman, Hung, Kiermaier, Myers \&Theisen

Thank You for

 your attention!