High-Energy Behavior of Scattering Amplitudes in Theories with Purely Virtual Particles

Marco Piva

IFT University of Warsaw

- **1** Introduction on PVP
- **2** Scattering in quantum gravity
- **3** Unitarity Bounds and Perturbativity
- **4** O(N) models and large-N expansion

5 Results

Introduction on PVP

Particle Physics and Quantum Gravity

In particle physics

Locality, renormalizability and unitarity (plus symmetries)

 \Downarrow

Standard Model

Particle Physics and Quantum Gravity

In particle physics

Locality, renormalizability and unitarity (plus symmetries)

\Downarrow

Standard Model

In gravity

Einstein gravity $S = \int \sqrt{-g}R$ Unitary \checkmark Renormalizable \times Stelle gravity $S = \int \sqrt{-g} \left[R + R^2 + R^2_{\mu\nu} \right]$ Unitary × Renormalizable ✓ Degrees of freedom in Stelle theory

$$S_{\rm QG}(g) = -\frac{1}{16\pi} \int \sqrt{-g} \left(M_{\rm pl}^2 R - \frac{\xi}{6} R^2 + \frac{\alpha}{2} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right), \qquad g_{\mu\nu} = \eta_{\mu\nu} + \sqrt{32\pi} h_{\mu\nu}.$$
DOF

Massless graviton Massive scalar ϕ Massive spin-2 ghost χ

 $h_{\mu\nu}$ propagator

$$\begin{split} \frac{i}{p^2} \left[\frac{\Pi_{\mu\nu\rho\sigma}^{(2)}}{(M_{\rm pl}^2 - \alpha p^2)} - \frac{\Pi_{\mu\nu\rho\sigma}^{(0)}}{2(M_{\rm pl}^2 - \xi p^2)} \right] + \text{g.f.} &= \frac{i}{2M_{\rm pl}^2} \left[\frac{2\Pi_{\mu\nu\rho\sigma}^{(2)} - \Pi_{\mu\nu\rho\sigma}^{(0)}}{p^2} - \frac{2\Pi_{\mu\nu\rho\sigma}^{(2)}}{p^2 - m_\chi^2} + \frac{\Pi_{\mu\nu\rho\sigma}^{(0)}}{p^2 - m_\chi^2} \right] + \text{g.f.}, \\ m_\chi^2 &= M_{\rm pl}^2 / \alpha, \qquad m_\phi^2 = M_{\rm pl}^2 / \xi. \end{split}$$

Off-shell χ and ϕ are responsible for renormalizability \checkmark

On-shell χ is responsible for the violation of unitarity X

Purely Virtual Particles

D. Anselmi and MP, JHEP 06 (2017) 066, D. Anselmi JHEP 06 (2017) 086

In quantum field theory a particle can be either "virtual" or "real"(on shell)

Real photon: light

Virtual photon: electromagnetic force

Purely Virtual Particles

D. Anselmi and MP, JHEP 06 (2017) 066, D. Anselmi JHEP 06 (2017) 086

In quantum field theory a particle can be either "virtual" or "real"(on shell)

Real photon: light

Virtual photon: electromagnetic force

On-shell and virtual parts are related because of the optical theorem and the Feynman prescription

Purely Virtual Particles

D. Anselmi and MP, JHEP 06 (2017) 066, D. Anselmi JHEP 06 (2017) 086

In quantum field theory a particle can be either "virtual" or "real"(on shell)

Real photon: light

Virtual photon: electromagnetic force

Purely virtual particles (PVP)

- Only mediate interactions
- Contribute to renormalization
 - \bullet Never be on shell
 - Consistent with unitarity.

• Optical theorem

$$S = 1 + iT$$
, $SS^{\dagger} = 1$ \Leftrightarrow $-i(T - T^{\dagger}) = TT^{\dagger}$.

• Optical theorem

$$S = 1 + iT$$
, $SS^{\dagger} = 1$ \Leftrightarrow $-i(T - T^{\dagger}) = TT^{\dagger}$.

• Cutting equations

$$G + (G)^* + \sum_{\text{cuts}} G_c = 0, \qquad G = iT, \quad G = \text{diagram},$$

• Optical theorem

$$S = 1 + iT$$
, $SS^{\dagger} = 1$ \Leftrightarrow $-i(T - T^{\dagger}) = TT^{\dagger}$.

• Cutting equations

$$G + (G)^* + \sum_{\text{cuts}} G_c = 0, \qquad G = iT, \quad G = \text{diagram},$$

• Pseudo-unitarity equation

$$-i(T - T^{\dagger}) = THT^{\dagger}, \qquad H = \text{diag}(1, \dots, 1, -1, \dots, -1)$$

• Optical theorem

$$S = 1 + iT$$
, $SS^{\dagger} = 1$ \Leftrightarrow $-i(T - T^{\dagger}) = TT^{\dagger}$.

• Cutting equations

$$G + (G)^* + \sum_{\text{cuts}} G_c = 0, \qquad G = iT, \quad G = \text{diagram},$$

• Pseudo-unitarity equation

$$-i(T - T^{\dagger}) = THT^{\dagger}, \qquad H = \text{diag}(1, \dots, 1, -1, \dots, -1)$$

• Optical theorem

$$S = 1 + iT$$
, $SS^{\dagger} = 1$ \Leftrightarrow $-i(T - T^{\dagger}) = TT^{\dagger}$.

• Cutting equations

$$G + (G)^* + \sum_{\text{cuts}} G_c = 0, \qquad G = iT, \quad G = \text{diagram},$$

• Pseudo-unitarity equation

$$-i(T - T^{\dagger}) = THT^{\dagger}, \qquad H = \operatorname{diag}(1, \dots, 1, -1, \dots, -1)$$

• Goal: consistent projection

$$\int d\Pi_f \left| \underbrace{-F}_{away} \right|^2 = 2 \operatorname{Im} \left[(-i) \underbrace{-F}_{away} \right] = \underbrace{-F}_{away} = 0 \text{ by fakeon prescription}$$

Cuts and imaginary parts

PVP cut propagator vanishes. A bubble diagram has only one threshold

More complicated diagrams have multiple thresholds \Rightarrow Modified functions

Cuts and imaginary parts

PVP cut propagator vanishes. A bubble diagram has only one threshold

More complicated diagrams have multiple thresholds \Rightarrow Modified functions

 $Diagram \to Diagram - \Delta_{Diagram}^{n}, \qquad n = \# of PVP \text{ inside the loop}$ (1)

For one-loop bubble diagram (this talk): $\Delta_{\text{Bubble}}^{1,2} = \text{Re(Bubble})$ For triangles and boxes see A. Melis and MP, PRD 108 (2023) 9, 096021. For general procedure D. Anselmi JHEP 11 (2021) 030.

7 / 29

Threshold decomposition and spectral identities

D. Anselmi, JHEP 11 (2021) 030

$$G_N = \int \frac{\mathrm{d}^D k}{(2\pi)^D} \prod_{a=1}^N \frac{1}{(k-p_a)^2 - m_a^2 + i\epsilon_a} = \int \frac{\mathrm{d}^{D-1} \mathbf{k}}{(2\pi)^{D-1}} \left(\prod_{a=1}^N \frac{1}{2\omega_a}\right) G_N^s$$

Threshold decomposition and spectral identities

D. Anselmi, JHEP 11 (2021) 030

$$G_N = \int \frac{\mathrm{d}^D k}{(2\pi)^D} \prod_{a=1}^N \frac{1}{(k-p_a)^2 - m_a^2 + i\epsilon_a} = \int \frac{\mathrm{d}^{D-1} \mathbf{k}}{(2\pi)^{D-1}} \left(\prod_{a=1}^N \frac{1}{2\omega_a}\right) G_N^s$$

Skeleton diagram

$$G_N^s = \int \frac{\mathrm{d}k^0}{2\pi} \prod_{a=1}^N \frac{2\omega_a}{(k^0 - e_a)^2 - \omega_a^2 + i\epsilon_a}, \qquad e_a = p_a^0, \qquad \omega_a = \sqrt{(\mathbf{k} - \mathbf{p}_a)^2 + m_a^2}$$

Spectral identities $G^{s} + (G^{s})^{*} + \sum_{cuts} G_{c}^{s} = 0.$ which holds threshold by thresholds.

$$B^{s} = -\frac{i}{e_{1} - e_{2} - \omega_{1} - \omega_{2} + i\epsilon} - \frac{i}{e_{2} - e_{1} - \omega_{1} - \omega_{2} + i\epsilon}.$$

Using $\frac{i}{x+i\epsilon} = \mathcal{P}\frac{i}{x} + \pi\delta(x)$ everywhere

$$B^s = -i\mathcal{P}_2 - \Delta^{12} - \Delta^{21}$$

$$\mathcal{P}^{ab} = \mathcal{P}\frac{1}{e_a - e_b - \omega_a - \omega_b}, \qquad \mathcal{P}_2 = \mathcal{P}^{ab} + \mathcal{P}^{ba}, \qquad \Delta^{ab} = \pi\delta(e_a - e_b - \omega_a - \omega_b)$$

$$B^{s} = -\frac{i}{e_{1} - e_{2} - \omega_{1} - \omega_{2} + i\epsilon} - \frac{i}{e_{2} - e_{1} - \omega_{1} - \omega_{2} + i\epsilon}.$$

-

Using $\frac{i}{x+i\epsilon} = \mathcal{P}\frac{i}{x} + \pi\delta(x)$ everywhere

$$B^s = -i\mathcal{P}_2 - \Delta^{12} - \Delta^{21}$$

$$\mathcal{P}^{ab} = \mathcal{P}\frac{1}{e_a - e_b - \omega_a - \omega_b}, \qquad \mathcal{P}_2 = \mathcal{P}^{ab} + \mathcal{P}^{ba}, \qquad \Delta^{ab} = \pi\delta(e_a - e_b - \omega_a - \omega_b)$$

Diag. Terms	\bigcirc^2			
\mathcal{P}_2	-i	i	0	0
Δ^{12}	-1	-1	2	0
Δ^{21}	-1	-1	0	2

$$B^{s} = -\frac{i}{e_{1} - e_{2} - \omega_{1} - \omega_{2} + i\epsilon} - \frac{i}{e_{2} - e_{1} - \omega_{1} - \omega_{2} + i\epsilon}$$

Using $\frac{i}{x+i\epsilon} = \mathcal{P}\frac{i}{x} + \pi\delta(x)$ everywhere

$$B^s = -i\mathcal{P}_2 - \Delta^{12} - \Delta^{21}$$

$$\mathcal{P}^{ab} = \mathcal{P} \frac{1}{e_a - e_b - \omega_a - \omega_b}, \qquad \mathcal{P}_2 = \mathcal{P}^{ab} + \mathcal{P}^{ba}, \qquad \Delta^{ab} = \pi \delta(e_a - e_b - \omega_a - \omega_b)$$

$$\boxed{\begin{array}{c|c} \text{Diag.} & 2 \\ \text{Terms} & 1 \\ \hline \mathcal{P}_2 & -i \\ \hline \mathcal{Q}_1 & -1 \\ \hline \mathcal{Q}_2 & -1$$

If we want to include PVP, we kill all the Δ 's that contain at least one PVP frequency.

Diag. Terms	2 3 1		X.	Tundu				
\mathcal{P}_3	-i	i	0	0	0	0	0	0
$\Delta^{12} Q^{13}$	-1	-1	2	0	0	0	0	0
$\Delta^{23} Q^{21}$	$^{-1}$	-1	0	2	0	0	0	0
$\Delta^{31} Q^{32}$	$^{-1}$	-1	0	0	2	0	0	0
$\Delta^{21} Q^{23}$	-1	-1	0	0	0	2	0	0
$\Delta^{32} Q^{31}$	-1	-1	0	0	0	0	2	0
$\Delta^{13} Q^{12}$	-1	-1	0	0	0	0	0	2
$\Delta^{12}\Delta^{13}$	i	-i	2i	0	0	0	0	-2i
$\Delta^{23}\Delta^{21}$	i	-i	0	2i	0	-2i	0	0
$\Delta^{31}\Delta^{32}$	i	-i	0	0	2i	0	-2i	0
$\Delta^{21}\Delta^{31}$	i	-i	0	0	2i	-2i	0	0
$\Delta^{32} \Delta^{12}$	i	-i	2i	0	0	0	-2i	0
$\Delta^{13} \overline{\Delta^{23}}$	i	-i	0	2i	0	0	0	-2i

$$\mathcal{P}_3 = \mathcal{P}^{12} \mathcal{P}^{13} + \text{cycl} + (e \to -e), \qquad \mathcal{Q}^{ab} = \mathcal{P}^{ab} - \mathcal{P} \frac{1}{e_a - e_b - \omega_a + \omega_b}.$$

Diag. Terms	2 3 1			<u> Mundu</u>				
\mathcal{P}_3	-i	i	0	0	0	0	0	0
$\Delta^{12} Q^{13}$	-1	-1	2	0	0	0	0	0
$\Delta^{23} Q^{21}$	-1	-1	0	2	0	0	0	0
$\Delta^{31} Q^{32}$	-1	-1	0	0	2	0	0	0
$\Delta^{21} Q^{23}$	-1	-1	0	0	0	2	0	0
$\Delta^{32} Q^{31}$	-1	-1	0	0	0	0	2	0
$\Delta^{13} Q^{12}$	-1	-1	0	0	0	0	0	2
$\Delta^{12}\Delta^{13}$	i	-i	2i	0	0	0	0	-2i
$\Delta^{23}\Delta^{21}$	i	-i	0	2i	0	-2i	0	0
$\Delta^{31}\Delta^{32}$	i	-i	0	0	2i	0	-2i	0
$\Delta^{21}\Delta^{31}$	i	-i	0	0	2i	-2i	0	0
$\Delta^{32} \Delta^{12}$	i	-i	2i	0	0	0	-2i	0
$\Delta^{13} \Delta^{23}$	i	-i	0	2i	0	0	0	-2i

$$\mathcal{P}_{ABC} = \mathcal{P}^{12}\mathcal{P}^{13} + \text{cycl} + (e \to -e), \qquad \mathcal{Q}^{ab} = \mathcal{P}^{ab} - \mathcal{P}\frac{1}{e_a - e_b - \omega_a + \omega_b}.$$

Scattering in quantum gravity

Graviton scattering in quantum gravity

In Einstein gravity (unitary, nonrenormalizable)

$$S_{\rm H}(g) = -\frac{1}{2\kappa^2} \int \sqrt{-g}R, \qquad \kappa^2 = 8\pi G, \qquad g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu} \tag{2}$$

Tree level amplitudes

$$\mathcal{A}_{hh \to hh}^{\mathrm{EG}} \sim \kappa^2 s, \qquad s = \text{ c.o.m. energy squared}$$
(3)

Graviton scattering in quantum gravity

In Einstein gravity (unitary, nonrenormalizable)

$$S_{\rm H}(g) = -\frac{1}{2\kappa^2} \int \sqrt{-g}R, \qquad \kappa^2 = 8\pi G, \qquad g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu}$$
(2)

Tree level amplitudes

$$\mathcal{A}_{hh \to hh}^{\mathrm{EG}} \sim \kappa^2 s, \qquad s = \text{ c.o.m. energy squared}$$
(3)

In Stelle gravity (non-unitary, renormalizable)

$$S_{\rm SG}(g) = -\frac{1}{2\kappa^2} \int \sqrt{-g} \left[\zeta R - \frac{1}{6\xi} R^2 + \frac{1}{2\alpha} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right], \qquad C^{\mu}{}_{\nu\rho\sigma} = \text{Weyl tensor} \tag{4}$$

Tree level amplitudes

P. Donà, S. Giaccari, L. Modesto, L. Rachwal, Y. Zhu JHEP 08 (2015) 038.

$$\mathcal{A}_{hh\to hh}^{\rm SG} = \mathcal{A}_{hh\to hh}^{\rm EG} \tag{5}$$

Graviton scattering in quantum gravity

In Einstein gravity (unitary, nonrenormalizable)

$$S_{\rm H}(g) = -\frac{1}{2\kappa^2} \int \sqrt{-g}R, \qquad \kappa^2 = 8\pi G, \qquad g_{\mu\nu} = \eta_{\mu\nu} + 2\kappa h_{\mu\nu}$$
(2)

Tree level amplitudes

$$\mathcal{A}_{hh\to hh}^{\mathrm{EG}} \sim \kappa^2 s, \qquad s = \text{ c.o.m. energy squared}$$
(3)

In Stelle gravity (non-unitary, renormalizable)

$$S_{\rm SG}(g) = -\frac{1}{2\kappa^2} \int \sqrt{-g} \left[\zeta R - \frac{1}{6\xi} R^2 + \frac{1}{2\alpha} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right], \qquad C^{\mu}{}_{\nu\rho\sigma} = \text{Weyl tensor} \tag{4}$$

Tree level amplitudes

P. Donà, S. Giaccari, L. Modesto, L. Rachwal, Y. Zhu JHEP 08 (2015) 038.

$$\mathcal{A}_{hh\to hh}^{\rm SG} = \mathcal{A}_{hh\to hh}^{\rm EG} \tag{5}$$

12 / 29

Equivalent formulation of Stelle gravity

D. Anselmi and MP, JHEP 11 (2018) 021.

$$S_{\rm SG}(g) = -\frac{1}{2\kappa^2} \int \sqrt{-g} \left[\zeta R - \frac{1}{6\xi} R^2 + \frac{1}{2\alpha} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right] \tag{6}$$

Equivalent action

auxiliary fields ϕ , $\chi_{\mu\nu}$ + Weyl transformation + field redefinitions. \downarrow

$$S(g,\phi,\chi) = -\frac{1}{2\kappa^2} \int \sqrt{-g} \left[\zeta R + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right] + S_{\chi\chi}(g,\chi) + S_{\rm int}(g,\chi,\phi)$$
(7)
$$V(\phi) = \frac{m_\phi^2}{\kappa^2} (1 - e^{\tilde{\kappa}\phi})^2, \qquad S_{\chi\chi} = -S_{\rm Pauli-Fierz}$$

Vertices in S_{int}

Unitarity Bounds and Perturbativity

Unitarity bounds and perturbativity

Usual derivation of Unitarity bounds for 2-to-2 scattering of scalars

$$\sigma(s) = \frac{1}{32\pi s} \int_{-1}^{1} \mathrm{d}v |\mathcal{M}(s,v)|^2, \qquad v \equiv \cos\theta.$$
(10)

$$S = 1 + iT, \qquad S^{\dagger}S = 1, \qquad -i\left(T - T^{\dagger}\right) = \frac{1}{2}T^{\dagger}T \qquad (11)$$

$$\Downarrow$$

$$\operatorname{Im}\mathcal{M}(s,1) = \sqrt{\kappa(s,m_1^2,m_2^2)} \sum_X \sigma_X(s) \ge \sqrt{\kappa(s,m_1^2,m_2^2)} \sigma(s), \tag{12}$$

$$\kappa(x, y, z) = x^{2} + y^{2} + z^{2} - xy - xz - yz$$
(13)

Partial wave expansion in Legendre polynomials

$$\mathcal{M}(s,v) = 16\pi \sum_{j=0}^{\infty} (2j+1)A_j(s)P_j(v), \qquad \sigma(s) = \frac{16\pi}{s} \sum_{j=0}^{\infty} (2j+1)|A_j(s)|^2$$
(14)

Unitarity bounds and perturbativity

$$\sum_{j=0}^{\infty} (2j+1) \operatorname{Im} A_j(s) \ge \frac{\sqrt{\kappa(s, m_1^2, m_2^2)}}{s} \sum_{j=0}^{\infty} (2j+1) |A_j(s)|^2.$$
(15)

For elastic scattering only we have the equality, which leads to

$$|\mathcal{A}_j| \le 1, \qquad 0 \le \mathrm{Im}\mathcal{A}_j \le 1, \qquad |\mathrm{Re}\mathcal{A}_j| \le \frac{1}{2}, \qquad \mathcal{A}_j(s) = \frac{\sqrt{\kappa(s, m_1^2, m_2^2)}}{s} A_j(s) \tag{16}$$

So far Unitarity \Rightarrow (15). Therefore, if (15) is violated \Rightarrow Unitarity is violated.

Unitarity bounds and perturbativity

$$\sum_{j=0}^{\infty} (2j+1) \operatorname{Im} A_j(s) \ge \frac{\sqrt{\kappa(s, m_1^2, m_2^2)}}{s} \sum_{j=0}^{\infty} (2j+1) |A_j(s)|^2.$$
(15)

For elastic scattering only we have the equality, which leads to

$$|\mathcal{A}_j| \le 1, \qquad 0 \le \mathrm{Im}\mathcal{A}_j \le 1, \qquad |\mathrm{Re}\mathcal{A}_j| \le \frac{1}{2}, \qquad \mathcal{A}_j(s) = \frac{\sqrt{\kappa(s, m_1^2, m_2^2)}}{s} A_j(s) \tag{16}$$

So far Unitarity \Rightarrow (15). Therefore, if (15) is violated \Rightarrow Unitarity is violated.

• Typical argument:

 $\mathcal{M} = \mathcal{M}^{\text{tree}} + \mathcal{M}^{\text{loops}}, \quad \mathcal{M}^{\text{tree}} = 16\pi A_0^{\text{tree}} + \dots, \quad A_0^{\text{tree}} \sim s \text{-channel diagrams}$ (17)

X if $\mathcal{A}_0^{\text{tree}}$ violates (16) at some scale, then the theory violates unitarity at some scale.

Unitarity **and** perturbativity $(|\mathcal{M}^{\text{loop}}| < |\mathcal{M}^{\text{tree}}|) \Rightarrow (16)$ for $\mathcal{A}_0^{\text{tree}}$

 \checkmark if $\mathcal{A}_0^{\text{tree}}$ violates (16) at some scale, then **either** unitarity or perturbativity is violated at some scale

Diagrammatic optical theorem

Unitarity can be checked by means of the cutting equations

$$2\mathrm{Im}\left(-iG\right) = -\sum_{c} G_{c} \tag{18}$$

which hold for any diagram G for any local QFT.

- Absence of ghosts \Rightarrow (18) is the diagrammatic version of the unitarity equation.
- The cutting equations (18) relies only on the diagramamtic expansion.
- No assumptions on the behavior of G.

Diagrammatic optical theorem

Unitarity can be checked by means of the cutting equations

$$2\mathrm{Im}\left(-iG\right) = -\sum_{c} G_{c} \tag{18}$$

which hold for any diagram G for any local QFT.

- Absence of ghosts \Rightarrow (18) is the diagrammatic version of the unitarity equation.
- The cutting equations (18) relies only on the diagramamtic expansion.
- No assumptions on the behavior of G.

 \Downarrow

If $\mathcal{A}_0^{\text{tree}}$ violates $|\mathcal{A}_0^{\text{tree}}| \leq 1$ etc... at some scale, then perturbativity is violated at some scale.

O(N) models

O(N) models and large-N diagrammatics

$$\mathcal{L}(\varphi) = \frac{1}{2} \partial_{\mu} \varphi^a \partial^{\mu} \varphi^a - \frac{1}{2} m^2 \varphi^a \varphi^a - \frac{g}{8} (\varphi^a \varphi^a)^2, \qquad a = 1, \dots N$$
(19)

Identify the orders in N

$$-\frac{g}{8}(\varphi^a\varphi^a)^2 \to \frac{1}{2g}\Omega^2 - \frac{1}{2}\Omega\varphi^a\varphi^a, \qquad \tilde{g} = gN \quad (\text{'t Hooft coupling}) \tag{20}$$

Study the limit $N \to \infty$ by keeping \tilde{g} fixed.

- Each Ω internal line gives 1/N
- Each closed φ loop gives N

O(N) models and large-N diagrammatics

$$\mathcal{L}(\varphi) = \frac{1}{2} \partial_{\mu} \varphi^a \partial^{\mu} \varphi^a - \frac{1}{2} m^2 \varphi^a \varphi^a - \frac{g}{8} (\varphi^a \varphi^a)^2, \qquad a = 1, \dots N$$
(19)

Identify the orders in N

$$-\frac{g}{8}(\varphi^a\varphi^a)^2 \to \frac{1}{2g}\Omega^2 - \frac{1}{2}\Omega\varphi^a\varphi^a, \qquad \tilde{g} = gN \quad (\text{'t Hooft coupling}) \tag{20}$$

Study the limit $N \to \infty$ by keeping \tilde{g} fixed.

- Each Ω internal line gives 1/N
- Each closed φ loop gives N

Consider the scattering of $\varphi^a\varphi^a\to\varphi^b\varphi^b$ with $a\neq b$

All the bubble insertions are order 1/N and can be resummed

Higher-derivative O(N) models

$$\mathcal{L}(\varphi) = \frac{1}{2} \partial_{\mu} \varphi^{a} F_{n} \left(\frac{-\Box}{M^{2}}\right) \partial^{\mu} \varphi^{a} - \frac{1}{2} m^{2} \varphi^{a} F_{n} \left(\frac{-\Box}{M^{2}}\right) \varphi^{a} - \frac{1}{8} \varphi^{2} G_{r} \left(\frac{-\Box}{M^{2}}\right) \varphi^{2}, \qquad \varphi^{2} \equiv \varphi^{a} \varphi^{a}, \quad (21)$$

$$F_n(z) = 1 + \sum_{i=1}^n f_i z^i, \qquad G_r(z) = \sum_{i=0}^r \lambda_i z^i,$$
 (22)

• Auxiliary fields and 't Hooft couplings

$$-\frac{1}{8}\varphi^2 G_r\left(\frac{-\Box}{M^2}\right)\varphi^2 \to \frac{1}{2}\Omega G_r^{-1}\left(\frac{-\Box}{M^2}\right)\Omega - \frac{1}{2}\Omega\varphi^2, \qquad \tilde{\lambda}_i = \lambda_i N$$
(23)

• Propagators

$$iD_{\Omega}(p^2) = iG_r(p^2), \qquad iD_{\varphi}^{ab}(p) = \frac{i\delta^{ab}}{(p^2 - m^2 + i\epsilon)F_n(p^2/M^2)} \equiv i\delta^{ab}D_{\rm HD}(p^2)$$
 (24)

Bubble diagrams

$$D_{\rm HD}(p^2) = \frac{a_0}{p^2 - m^2 + i\epsilon} + \sum_{i=1}^n \frac{a_i}{p^2 - M_i^2 + i\epsilon}, \quad \text{with} \quad \sum_{i=0}^n a_i = 0$$
(25)

• Generic bubble diagram

$$B_{ij}(p^2) \equiv \int \frac{\mathrm{d}^D q}{(2\pi)^D} \frac{1}{(p+q)^2 - M_i^2 + i\epsilon} \frac{1}{q^2 - M_j^2 + i\epsilon},\tag{26}$$

$$B_{ij}(p^2,\tau) = \tau \operatorname{Re}B_{ij}(p^2) + i \operatorname{Im}B_{ij}(p^2), \qquad (\tau = 0 \text{ for PVP})$$
(27)

• Ω self energy is $N\Sigma(p^2, \tau)$

$$\Sigma(p^2,\tau) = \int \frac{\mathrm{d}^D q}{(2\pi)^D} D_{\mathrm{HD}}(p+q) D_{\mathrm{HD}}(q) = \sum_{i,j=0}^n a_i a_j B_{ij}(p^2,\tau)$$
(28)

High-energy expansion

$$\operatorname{Re}B_{ij}(s,\tau) = -\frac{\tau}{16\pi} \left(1 - \frac{M_i^2 + M_j^2}{s} \right) + \mathcal{O}(1/s^2) \equiv \operatorname{Re}B_{ij}^{(1)}(s,\tau) + \mathcal{O}(1/s^2)$$
(29)

• For k particles with $\tau = 1$ and n + 1 - k with $\tau \neq 1$

$$\operatorname{Re}\Sigma(s,\tau) = (1-\tau)\sum_{i,j=0}^{k} a_i a_j B_{ij}^{(1)}(s,1) + \mathcal{O}(1/s^2), \qquad \operatorname{Im}\Sigma(s,\tau) = \mathcal{O}(1/s^2)$$
(30)

High-energy expansion

$$\operatorname{Re}B_{ij}(s,\tau) = -\frac{\tau}{16\pi} \left(1 - \frac{M_i^2 + M_j^2}{s} \right) + \mathcal{O}(1/s^2) \equiv \operatorname{Re}B_{ij}^{(1)}(s,\tau) + \mathcal{O}(1/s^2)$$
(29)

• For k particles with $\tau = 1$ and n + 1 - k with $\tau \neq 1$

$$\operatorname{Re}\Sigma(s,\tau) = (1-\tau)\sum_{i,j=0}^{k} a_i a_j B_{ij}^{(1)}(s,1) + \mathcal{O}(1/s^2), \qquad \operatorname{Im}\Sigma(s,\tau) = \mathcal{O}(1/s^2)$$
(30)

• For $\tau = 1$ (standard particles and ghosts)

$$\Sigma(s,1) = \mathcal{O}(1/s^2) \tag{31}$$

• For $\tau = 0$ (k standard particles and n + 1 - k PVP)

$$\operatorname{Re}\Sigma(s,0) = \mathcal{O}(1/s^0), \qquad \operatorname{Im}\Sigma(s,0) = \mathcal{O}(1/s^2)$$
(32)

This difference is crucial in the resummed Ω propagator

$$iD(s,\tau) = \frac{1}{N} \frac{iG_r(s,\tilde{\lambda}_i)}{1 - iG_r(s,\tilde{\lambda}_i)\Sigma(s,\tau)}$$
(33)

Explicit example

$$F_1(z) = 1 - z, \qquad G_1(z) = \lambda_0 - \lambda_1 z$$
 (34)

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \varphi_a) \left(1 + \frac{\Box}{M^2} \right) (\partial^{\mu} \varphi_a) - \frac{m^2}{2} \varphi_a \left(1 + \frac{\Box}{M^2} \right) \varphi_a - \frac{1}{8} \varphi^2 \left(\lambda_0 + \frac{\lambda_1 \Box}{M^2} \right) \varphi^2$$
(35)

Propagators

$$iD_{\varphi}^{ab}(p^2) = -\frac{iM^2\delta^{ab}}{(p^2 - m^2 + i\epsilon)(p^2 - M^2 + i\epsilon)}, \quad \text{with } a_0 = -a_1 = \frac{M^2}{M^2 - m^2}$$
(36)
$$iD_{\Omega}(p^2) = \lambda_0 - \frac{\lambda_1 p^2}{M^2}$$
(37)

Properties

. . . .

- Superrenormalizable
- For $\tau = 1$ there are N standard particles of mass m and N ghosts of mass M (violates opt th).
- For $\tau = 0$ there are N standard particles of mass m and N PVP of mass M (unitary).
- Setting $F_1(z) = 1$ give a nonrenormalizable theory.

First 40 lines of 3-leg vertex in Stelle gravity. Total is 790 lines, txt file 120 kB

First 40 lines of 3-leg vertex in Stelle gravity. Total is 790 lines, txt file 120 kB 4-leg vertex txt file is 4 MB

d (mul pul)%d (mu2 pu2)%d (pu3 pu3)%i #Lambda + 2/3%d (mul pul)%d (pu2 pu2)%d (mu3 pu3)%po1 po1%po2 po2%i #Rb + 4/3%d (mu1 pu1)%d (mu2 pu2)%d (mu3 pu3)%po1 po1% pp2,op2*1 *Aa + 2/3*d (mu1,nu1)*d (mu2,nu2)*d (mu2,nu2)*d (mu3,nu3)*pp1,op1*op2,op3*1 *Bb + 4/3*d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pp1,op1*op2,op3*1 *Aa + 2/3* d (mu1.nu1)*d (mu2.nu2)*d (mu3.nu3)*pp1.pp1*pp3.pp3*i *Bb + 4/3*d (mu1.nu1)*d (mu2.nu2)*d (mu3.nu3)*pp1.pp1*pp3.pp3*i *Aa - d (mu1.nu1)*d (mu2.nu2)* d (mu3,nu3)*pol,pol*t *Cc + 2/3*d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pol,po2*po3,po3*t *Bb + 4/3*d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pol,po2*po3,po3*t *Aa pp2.pp2+1 +8b + 4/3*d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pp1.pp3*pp2.pp2*1 *Aa - d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pp1.pp3*1 *Cc - d (mu1,nu1)*d (mu2,nu2)* <u>d (mu3,nu3)*pp1.pp3^2*i *Aa + 2/3*d (mu1,nu1)*d (mu2,nu2)*d (nu3,nu3)*pp2.pp3*i *Bb + 4/3*d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pp2.pp2*pp3.pp3*i *Aa</u> 0 (wui,nu1)*4 (nu2,nu2)*d (wu3,nu3)*pp2,pp2*t *C - d (wu1,nu1)*d (wu2,nu2)*d (wu3,nu3)*pp2,pp3*t *C - d (wu1,nu1)*d (wu2,nu2)*d (wu3,nu3)*pp2,pp3*t *Aa d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pp3,pp3*1 *Cc + 2*d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp1(nu3)*pp1(nu3)*t *Cc - 4/3*d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu 1*86 + 8/3*d (mut out)*d (mu2 ou2)*po1(mu3)*po1(mu3)*po2 po2*1 *aa - d (mut ou1)*d (mu2 ou2)*po1(mu3)*po1(nu3)*po2 po3*i *aa - d (mut ou1)*d (mu2 ou2)* pp1(mu3)*pp1(nu3)*pp3.pp3*i *Aa + d (mu1.nu1)*d (mu2.nu2)*pp1(mu3)*pp2(nu3)*i *Cc + 2*d (mu1.nu1)*d (mu2.nu2)*pp1(mu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*p d (mu2,nu2)*pp1(mu3)*pp2(nu3)*pp1,np3*1 *Aa + d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp2,np3*1 *Aa + d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp3(nu3)*1 *Cc + d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp3(nu3)*pp1,pp3*i *Aa - 2/3*d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp3(nu3)*pp2,pp2*i *Bb - 4/3*d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)* p3(nu3)*pp2.pp2*(_*Aa + d (ru1,nu1)*d (ru2,nu2)*pp1(nu3)*pp2(ru3)*t *Cc + 2*d (ru1,nu1)*d (ru2,nu2)*pp1(nu3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp *pp1(nu3)*pp2(mu3)*pp1, pp3*i *Aa + d (mu1.nu1)*d (mu2.nu2)*pp1(nu3)*pp2, pp3*i *Aa + d (mu1.nu1)*d (mu2.nu2)*pp1(nu3)*pp3(mu3)*i *Cc + d (mu1.nu1)* d_(mu2, mu2)*pp1(mu3)*pp1(mu3)*pp1,pp31*_Ma = /2*d_(mu1,mu1)*d_(mu2,mu2)*pp1(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp3(mu3)*pp3(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp3(mu3)*pp d (mu1,nu1)*d_(nu2,nu2)*pp2(nu3)*p3(nu3)*t *Cc · 2/3*d_(nu1,nu1)*d_(mu2,nu2)*pp2(nu3)*pp3(nu3)*pp1.pp1*t*8b · 4/3*d_(nu1,nu1)*d_(mu2,nu2)*pp2(nu3)*p3(nu3)* pp1.pp1* *Aa + d (nu1.nu1)*d (nu2.nu2)*pp2(nu3)*pp3(nu3)*pp2.pp3* *Aa + d (nu1.nu1)*d (nu2.nu2)*pp3(nu3)*i *Cc - 2/3*d (nu1.nu1)*d (nu2.nu2)* pp2(nu3)*pp3(nu3)*pp1.pp1*1 *Bb - 4/3*d (nu1.nu1)*d (nu2.nu2)*pp2(nu3)*pp3.pp1*1 *Aa + d (nu1.nu1)*d (nu2.nu2)*pp2(nu3)*pp3(nu3)*pp1.pp1*1 *Aa + d (mu1, nu1)*d (mu2, nu2)*pp3(nu3)*pp3(nu3)*l *CC - 2/3*d (mu1, nu1)*d (mu2, nu2)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)* pn].pn]+i *Aa - 2/3*d (wil.pul)*d (mi2.piz)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(mi3)*pn3(d (mu2,nu2)*pp3(mu3)*pp3(nu3)*pp2,pp2*1 *8b - 4/3*d (mu1,nu1)*d (mu2,nu2)*pp3(mu3)*pp3(nu3)*pp2,pp2*1 *Aa + d (mu1,nu1)*d (mu2,mu3)*d (nu2,nu3)*t *Lambda - 2/ C(m2,m2) pp2(m3) pp2(m3) pp2(m3) pp2(m3) pp2(m3) m3) = (m2,m3) = Bb - 4/3*d (mu1,nu1)*d (mu2,nu3)*d (nu2,nu3)*d (nu2,nu pp1.pp2*pp1.pp3*1_*Aa - 1/2*d_(mu1,mu1)*d_(mu2,mu3)*d_(nu2,nu3)*pp1.pp2*pp3.pp3*1_*Aa + d_(mu1,nu1)*d_(mu2,mu3)*d_(nu2,nu3)*pp1.pp2*1_*Cc + d_(mu1,nu1)*d_(mu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3 d (mu2,mu3)*d (nu2,nu3)*op1.pp2^2*1 *Aa - 1/2*d (mu1,nu1)*d (mu2,mu3)*d (nu2,nu3)*pp1,pp3*pp2,pp3*pp2,pp3*pp2,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1,pp3*pp1, $(m_1, m_2) = (m_2, m_3) = (m_$ pp2 pp2+i +(c + 3/2*d (mu1 pu1)*d (mu2 mu3)*d (mu2 mu3)*nd(mu2 mu3)*nd(mu2 mu3)*d (mu2 mu3)*d (mu2 mu3)*nd(mu2 mu3)*n *noi(nu3)*i *Cc + d (nu1.nu1)*d (nu2.nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu3)*noi(nu pp1(nu2)*pp3(nu3)*pp3,pp3*1 *Aa - d (mu1,nu1)*d (mu2,nu3)*pp1(nu2)*pp2(nu3)*1 *Cc - d (mu1,nu1)*d (mu2,nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1 d (mu2,mu3)*pp1(nu2)*pp2(nu3)*pp3,pp3*i *Aa · d (mu1,nu1)*d (mu2,mu3)*pp1(nu2)*pp3(nu3)*i *Cc · d (mu1,nu1)*d (mu2,mu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3 d (mu1,nu1)*d (nu2,ru3)*pp1(nu2)*pp3(nu3)*pp1,pp3*t *Aa - 1/2*d (mu1,nu1)*d (ru2,ru3)*pp1(nu2)*pp3(nu3)*pp2,pp3*t *Aa - d (ru1,nu1)*d (ru2,ru3)*pp1(nu3)* pp2/nu2)*i *Cc + d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1 pp(na;) = C_C ((na; na)) = (na; na)) = (pp(na;) = pp(na;) = (pp(na; na)) = ((na; na)) = (pp(na;) = (pp(na; na)) = (pp(na;) = (pp(na; (mu2,mu3)*pp2(nu2)*pp2(nu3)*pp3.pp3*i *Aa - d (mu1,nu1)*d (mu2,mu3)*pp2(nu2)*pp3(nu3)*i_*Cc + 2/3*d (mu1,nu1)*d (mu2,mu3)*pp2(nu2)*pp3(nu3)*pp1.pp1i_*Bb +

First 40 lines of 3-leg vertex in Stelle gravity. Total is 790 lines, txt file 120 kB 4-leg vertex txt file is 4 MB 5-leg vertex txt file is 165 MB

d (mu1 pu1)*d (mu2 pu2)*d (mu3 pu3)*i *Lambda + 2/3*d (mu1 pu1)*d (mu2 pu2)*d (mu3 pu3)*po1 po1*po2 po2*i *Bb + 4/3*d (mu1 pu1)*d (mu2 pu2)*d (mu3 pu3)*po1 po1* pp2,op2*1 *Aa + 2/3*d (mu1,nu1)*d (mu2,nu2)*d (mu2,nu2)*d (mu3,nu3)*pp1,op1*op2,op3*1 *Bb + 4/3*d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pp1,op1*op2,op3*1 *Aa + 2/3* d (mu1.nu1)*d (mu2.nu2)*d (mu3.nu3)*pp1.pp1*pp3.pp3*i *Bb + 4/3*d (mu1.nu1)*d (mu2.nu2)*d (mu3.nu3)*pp1.pp1*pp3.pp3*i *Aa - d (mu1.nu1)*d (mu2.nu2)* $(m_2, m_2) = (m_2, m_2) = (m_$ p2.op2*1 *Bb + 4/3*d (mu1.nu1)*d (mu2.nu2)*d (mu3.nu3)*po1.op3*p2.op2*1 *Aa - d (mu1.nu1)*d (mu2.nu2)*d (mu3.nu3)*po1.op3*1 *Cc - d (mu1.nu1)*d (mu2.nu2)* <u>d (mu3,nu3)*pp1.pp3^2*i *Aa + 2/3*d (mu1,nu1)*d (mu2,nu2)*d (nu3,nu3)*pp2.pp3*i *Bb + 4/3*d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pp2.pp2*pp3.pp3*i *Aa</u> 0 (wui,nu1)*4 (nu2,nu2)*d (wu3,nu3)*pp2,pp2*t *C - d (wu1,nu1)*d (wu2,nu2)*d (wu3,nu3)*pp2,pp3*t *C - d (wu1,nu1)*d (wu2,nu2)*d (wu3,nu3)*pp2,pp3*t *Aa d (mu1,nu1)*d (mu2,nu2)*d (mu3,nu3)*pp3,pp3*i *CC + 2*d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp1(nu3)*i *CC - 4/3*d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp1(mu 1*8b - 8/3*((mu1.ou1)*d (mu2.ou2)*oo1(mu3)*oo1(ou3)*oo2.oo2*i *Aa - d (mu1.ou1)*d (mu2.ou2)*oo1(mu3)*oo1(ou3)*oo2.oo3*i *Aa - d (mu1.ou1)*d (mu2.ou2)* pp1(mu3)*pp1(nu3)*pp3.pp3*i *Aa + d (mu1.nu1)*d (mu2.nu2)*pp1(mu3)*pp2(nu3)*i *Cc + 2*d (mu1.nu1)*d (mu2.nu2)*pp1(mu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*p d (mu2,nu2)*pp1(mu3)*pp2(nu3)*pp1,np3*1 *Aa + d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp2,np3*1 *Aa + d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp3(nu3)*1 *Cc + d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp3(nu3)*pp1,pp3*i *Aa - 2/3*d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)*pp3(nu3)*pp2,pp2*i *Bb - 4/3*d (mu1,nu1)*d (mu2,nu2)*pp1(mu3)* p3(nu3)*pp2.pp2*(_*Aa + d (ru1,nu1)*d (ru2,nu2)*pp1(nu3)*pp2(ru3)*t *Cc + 2*d (ru1,nu1)*d (ru2,nu2)*pp1(nu3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp1(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp2(ru3)*pp *pp1(nu3)*pp2(mu3)*pp1, pp3*i *Aa + d (mu1.nu1)*d (mu2.nu2)*pp1(nu3)*pp2, pp3*i *Aa + d (mu1.nu1)*d (mu2.nu2)*pp1(nu3)*pp3(mu3)*i *Cc + d (mu1.nu1)* d_(mu2,mu2)*pp1(mu3)*pp1(mu3)*pp1(mu3)*pp2(mu3)*pp2(mu3)*p1(mu3,mu2)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu3)*pp2(mu pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2(nu3)*pp2 d (mu1,nu1)*d_(nu2,nu2)*pp2(nu3)*p3(nu3)*t *Cc · 2/3*d_(nu1,nu1)*d_(mu2,nu2)*pp2(nu3)*pp3(nu3)*pp1.pp1*t*8b · 4/3*d_(nu1,nu1)*d_(mu2,nu2)*pp2(nu3)*p3(nu3)* $0_{1,001}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,1002}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{2,102}^{-1,002}^{-1,002}$, $100_{2,102}^{-1,002}$, $100_{$ pp2(nu3)*pp3(nu3)*pp1.pp1*(*Bb - 4/3*d (nu1.nu1)*d (nu2.nu2)*pp2(nu3)*pp3(nu3)*pp1.pp1*(*Aa + d (nu1.nu1)*d (nu2.nu2)*pp2(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp d (mu1, nu1)*d (mu2, nu2)*pp3(nu3)*pp3(nu3)*l *CC - 2/3*d (mu1, nu1)*d (mu2, nu2)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)*pp3(nu3)* p_{1} p_{1} p_{2} p_{3} p_{3 d (mu2,nu2)*pp3(mu3)*pp3(nu3)*pp2,pp2*1 *8b - 4/3*d (mu1,nu1)*d (mu2,nu2)*pp3(mu3)*pp3(nu3)*pp2,pp2*1 *Aa + d (mu1,nu1)*d (mu2,mu3)*d (nu2,nu3)*t *Lambda - 2/ C(m2,m2) pp2(m3) pp2(m3) pp2(m3) pp2(m3) pp2(m3) m3) = (m2,m3) = Bb - 4/3*d (mu1,nu1)*d (mu2,nu3)*d (nu2,nu3)*d (nu2,nu pp1.pp2*pp1.pp3*1_*Aa - 1/2*d_(mu1,mu1)*d_(mu2,mu3)*d_(nu2,nu3)*pp1.pp2*pp3.pp3*1_*Aa + d_(mu1,nu1)*d_(mu2,mu3)*d_(nu2,nu3)*pp1.pp2*1_*Cc + d_(mu1,nu1)*d_(mu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3)*d_(nu2,mu3 d (mu2,mu3)*d (nu2,nu3)*pp1.pp2*2*i *Aa - 1/2*d (mu1,mu1)*d (mu2,mu3)*d (nu2,nu3)*pp1.pp3*pp2.pp2*i *Aa + d (mu1,mu1)*d (mu2,mu3)*d (nu2,nu3)*pp1.pp3*i *Cc + $(m_1, m_2) = (m_2, m_3) = (m_$ pp2 pp2+i +(c + 3/2*d (mu1 pu1)*d (mu2 mu3)*d (mu2 mu3)*nd(mu2 mu3)*nd(mu2 mu3)*d (mu2 mu3)*d (mu2 mu3)*nd(mu2 mu3)*n *pp1(nu3)*i_*Cc + d (mu1,nu1)*d (mu2,nu3)*pp1(nu2)*pp1(nu3)*pp2.pp2*i_*Aa + d (mu1,nu1)*d (mu2,nu3)*pp1(nu2)*pp1(nu3)*pp2.pp3*i_*Aa + d (mu1,nu1)*d (mu2,mu3)* pp1(nu2)*pp3(nu3)*pp3,pp3*1 *Aa - d (mu1,nu1)*d (mu2,nu3)*pp1(nu2)*pp2(nu3)*1 *Cc - d (mu1,nu1)*d (mu2,nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp2(nu3)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1(nu2)*pp1 d (mu2,mu3)*pp1(nu2)*pp2(nu3)*pp3,pp3*i *Aa · d (mu1,nu1)*d (mu2,mu3)*pp1(nu2)*pp3(nu3)*i *Cc · d (mu1,nu1)*d (mu2,mu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3)*pp1(nu2)*pp3(nu3 d (mu1,nu1)*d (nu2,ru3)*pp1(nu2)*pp3(nu3)*pp1,pp3*t *Aa - 1/2*d (mu1,nu1)*d (ru2,ru3)*pp1(nu2)*pp3(nu3)*pp2,pp3*t *Aa - d (ru1,nu1)*d (ru2,ru3)*pp1(nu3)* pp2/nu2)*i *Cc + d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp2/nu2)*pp1 = 0,0*i *Aa + 1/2*d (mu1, nu1)*d (mu2, mu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1(nu3)*pp1 pp(na;) = C_C ((na; na)) = (na; na)) = (pp(na;) = pp(na;) = (pp(na; na)) = ((na; na)) = (pp(na;) = (pp(na; na)) = (pp(na;) = (pp(na; (mu2,mu3)*pp2(nu2)*pp2(nu3)*pp3.pp3*i *Aa - d (mu1,nu1)*d (mu2,mu3)*pp2(nu2)*pp3(nu3)*i_*Cc + 2/3*d (mu1,nu1)*d (mu2,mu3)*pp2(nu2)*pp3(nu3)*pp1.pp1i_*Bb +

First 40 lines of 3-leg vertex in Stelle gravity. Total is 790 lines, txt file 120 kB 4-leg vertex txt file is 4 MB 5-leg vertex txt file is 165 MB 6-leg vertex txt file is 5.7 GB.

Results

Cross sections

For $\varphi^a \varphi^a \to \varphi^b \varphi^b$ with $a \neq b$

 \bullet Tree-level cross section

$$\sigma(s) = \frac{a_0^2}{16\pi s} \left(\lambda_0 - \lambda_1 \frac{s}{M^2}\right)^2 \sim \frac{s}{M^4} \text{ at high energies},\tag{38}$$

• Resummed cross sections

$$\sigma(s,\tau) = \frac{a_0^2}{16\pi s} |D(s,\tau)|^2$$
(39)

Cross sections

For $\varphi^a \varphi^a \to \varphi^b \varphi^b$ with $a \neq b$

 \bullet Tree-level cross section

$$\sigma(s) = \frac{a_0^2}{16\pi s} \left(\lambda_0 - \lambda_1 \frac{s}{M^2}\right)^2 \sim \frac{s}{M^4} \text{ at high energies},\tag{38}$$

• Resummed cross sections

$$\sigma(s,\tau) = \frac{a_0^2}{16\pi s} |D(s,\tau)|^2$$
(39)

Ghost vs PVP

$$\sigma_{\rm gh}(s) \equiv \sigma(s,1) \sim \frac{\tilde{\lambda}_1^2 s}{16\pi (M^2 - m^2)^2 N^2}, \qquad \sigma_{\rm PVP}(s) \equiv \sigma(s,0) \sim \frac{16\pi (M^2 - m^2)^2}{M^4 N^2} \frac{1}{s}$$
(40)

Nonrenormalizable case

$$F_0(z) = 1, \qquad G_1(z) = \lambda_0 - \lambda_1 z \tag{41}$$

$$\sigma_{\rm nr}(s) \sim \frac{16\pi}{s\left(1 + \ln^2 \frac{s}{m^2}\right)N^2} \tag{42}$$

Cross sections (plot)

Positivity bounds

- Nonperturbative resummations can cure appartent violations of unitarity bounds in renormalizable theories with PVP, as well as in unitary nonrenormalizable theories
- Renormalizable theories with ghosts cannot be cured in this way
- The resummations add new poles in the cross sections that could be interpreted as resonances

Difficulties with gravity

- Resum quartic vertices
- Justify the resummation (could be just a prescription)
- Long computations...