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Introduction

• Solving Einstein’s equations is hard! 

• But sometimes it is not necessary! 

• Some AdS/CFT observables are just integrals over (sub-)spaces of spacetime. 

• E.G. the on-shell action should give the large N index in field theory. 

 

• Looks very dependent on knowing the metric….. 

I ∼ ∫M
vol(M)(R + . . . . )



Introduction
• Equivariant Localization gives a way to compute these without knowing the metric! [Benetti-

Genolini, Gauntlett, Sparks] 

• Rough Idea:   

Spacetime with a symmetry. 

Integrals only receive contributions from symmetry fixed points. 

 

Remarks: 

• Don’t need to know explicit solution. 

• Result depends on topology. 

• Uniform method for obtaining results. 

Obs = ∫M
Φ = ∑

f.p.
Φ0



Equivariant Localization



Equivariant Cohomology
• Interested in computing integrals over manifolds with a symmetry group.  

• Consider a -dimensional manifold without boundary.  

•  a Killing vector field: 

 

• Assume that it generates a  isometry. 

• We are interested in integrating forms,  which satisfy 

2n

ξ

ℒξg = 0 ⇔ ∇μξν + ∇νξμ = 0

U(1)

Φ

ℒξΦ = 0



Equivariant Cohomology
• We replace cohomology with equivariant cohomology. 

• Exterior derivative replaced by twisted derivative 

 

• Forms are replaced by poly-forms, these are just forms of mixed degree.  

 

• In general  is not nilpotent:  

• Restrict to equivariant polyforms: , then  is nilpotent. 

d → dξ = d − ξ⌟

Φ = Φn + Φn−2 + . . . + Φ0

dξ d2
ξ = − ℒξ

ℒξΦ = 0 dξ



Equivariant Cohomology
• Can define -equivariant de Rham cohomology. 

• Equivariantly closed if . 

 

• Equivariantly exact if . 

• ’th -equivariant cohomology group is 

 

• For freely acting groups is ordinary cohomology on .

ξ

dξΦ = 0

dΦn = 0 , ξ⌟Φn = dΦn−2 , . . . ξ⌟Φ2 = dΦ0

Φ = dξΨ

n ξ

Hn
ξ (M) =

ker(dξ) |⋀n
ξ (M)

Im(dξ) |⋀n−1
ξ (M)

M/G



Equivariant Cohomlogy
• Equivariant integrals over  are defined as integrals over the top form of 

equivariantly closed form : 

 

• Top form is closed but not exact.  

• Can add an equivariantly exact poly-form without changing result. 

 

• Integrals depend only on the equivariant cohomology class.

M
Φ

∫M
Φ ≡ ∫M

Φ2n

∫M
(Φ + dξΦ) = ∫M

Φ



Equivariant integrals localise
• Integrals localise to fixed points of the symmetry.  

 

• We are free to modify intervals by equivariantly exact pieces. 

 

• Where  is some -equivariant polyform: . 

 

• Difference is equivariantly exact! Integrals are the same for all .

Mξ = {x ∈ M |ξ |x = 0}

∫M
Φ = ∫M

Φt ≡ ∫M
Φetdξβ

β ξ ℒξβ = 0
d
dt

Φt = Φ(dξβ)etdξβ = dξ(β ∧ Φt)

t



Equivariant integrals localise
• For  we have the original integral, but we can evaluate for any .  

• If  is semi-negative definite with maximum equal to 0 and we take 
 limit the integral localises to the minima. 

• Take  then we have: 

 

• The  acts as a delta function onto !

t = 0 t

dξβ |0−form
t → ∞

β = η ≡ g(ξ, ∙ )

∫M
Φ = lim

t→∞ ∫M
Φetdηe−t|ξ|2

= lim
t→∞ ∫M

e−t|ξ|2
Φ ∧ ∑

k

(tdη)k 1
k!

e−t|ξ|2
Mξ



Isolated fixed points
• Integrals localise, but how do we compute the contributions? 

• Assume the localisation locus  is a set of fixed points: . E.g. . 

• Zoom in near such a fixed point,  using Cartesian coordinates 
  with origin at . 

• Locally metric reads: 

 

• Killing vector takes the form 

Mξ Mξ = {xk} S2

p
xi = ri cos ϕi , yi = ri sin ϕi i ∈ {1,..,n} p

ds2 ≃
n

∑
i=1

(dx2
i + dy2

i ) =
n

∑
i=1

(dr2
i + r2

i dϕ2
i )

ξ ≃
n

∑
i=1

bp
i (xi

∂
∂yi

− yi
∂

∂xi ) =
n

∑
i=1

bp
i

∂
∂ϕi



Isolated fixed points
• The circle action generated by  acts on the ’th eigenspace as: 

 

• Can also compute , for us  is locally given by: 

 

• Remains to plug all this into the integral for .

ξ i

(xi
yi) = (

cos(bp
i ϕi) sin(bp

i ϕi)
−sin(bp

i ϕi) cos(bp
i ϕi)) (xi

yi)
η dξη

dξη ≃
n

∑
i=1

bp
i d(r2

i ) ∧ dϕi −
n

∑
i=1

(bp
i )2r2

i

Φt



Isolated fixed points
• The final result is: 

 

• This is just a Gaussian integral! 

 

• We now just add up all the contributions from fixed points!

lim
t→∞ ∫𝒩p

Φt = lim
t→∞

Φ0(p)
n

∏
i=1

tbp
i ∫

2π

0
dϕi ∫

∞

0
dr2

i e−t(bp
i )2r2

i

∫Np

Φ = Φ0(p)
(2π)n

∏n
i=1 bp

i



Beyond isolated fixed points
• One does not need to have just isolated fixed points.  

• E.g. The Schwarzschild metric. 

 

• At the horizon  and it locally looks like 

 

• The Killing vector  has a bolt at the horizon. A whole  is fixed by the action. 

• Need to take into account other fixed point loci. 

• Can have fixed point sets of dimension 0,2,4,….

ds2 = − f(r)dt2 + f(r)−1dr2 + r2ds2(S2)

f(rh) = 0

ds2 ≃ ds2(ℝ1,1) + r2
hds2(S2)

ξ = ∂t S2



BVAB theorem
• Can apply a similar logic to work out these contributions, result is the  

• BVAB theorem: [Berline, Vergne 82, Atiyah, Bott 84].  

The integral of an equivariantly closed form localises to fixed points of symmetry. 

 

• This looks a bit scary but it is not.

∫M
Φ = ∑

Σ
∫Σ

f*Φ
eξ(𝒩)

Euler form of normal bundle

Pullback to  of Σ Φ

Sum over fixed point set

What we care about



BVAB Theorem
• What is a fixed point set? 

• What is the normal bundle? 

•  ?eξ(𝒩)

• Somewhere where the action acts 
trivially,  there.  

• Bundle of points normal to fixed point 

set:  

• The Euler class of the normal bundle.  

ξ = 0

𝒩 =
k

∑
i=1

ℒi ≅ ℝ2k

e(ξ)(𝒩) =
k

∏
i=1

[c1(ℒ)i +
ϵi

2π ]

Weights of actionFirst Chern class



BVAB 

∫M2n

Φ = ∑
Σ

(2π)k

∏k
i=1 ϵi

∫Σ

f*Φ

∏k
i=1 [1 + 2π

ϵi
c1(ℒi)]

= ∑
dim0

1
dF0

(2π)n

ϵ1 . . . ϵn
Φ0 + ∑

dim 2

1
dF2

(2π)n−1

ϵ1 . . . ϵn−1 ∫ Φ2 − Φ0 ∑
1≤i≤n−1

2π
ϵi

c1(ℒi)

+ ∑
dim 4

1
dF4

(2π)n−2

ϵ1 . . . ϵn−2 ∫ Φ4 − Φ2 ∧ ∑
1≤i≤n−2

2π
ϵi

c1(ℒi) +Φ0 ∑
1≤i≤ j≤n−2

(2π)2

ϵiϵj
c1(ℒi) ∧ c1(ℒj) + ⋯ .

The full gory details: 😱



 exampleS2

•  

•  

• . Need polyform: 

• . 

• Two fixed points at poles of sphere.  

•  

           

ds2 = dθ2 + sin2 θdϕ2

Vol = ∫S2

sin θdθ ∧ dϕ ≡ ∫S2

Φ

ξ = ∂ϕ

ξ⌟Φ2 = dΦ0 = d cos θ

Vol =
2π
ϵN

Φ0 |N +
2π
ϵS

Φ0 |S

= 2π(cos(0) − cos(π)) = 4π

This is cheating a bit, we know the metric.  
This is a problem with the example.



  Exampleℂℙ2

• Consider the metric 

 

• Choice of Killing vector . Different types of fixed point sets! 

• For   fixed point at  and bolt at . 

• For , 3 fixed points at ( ) , ( , ) and ( ). 

• Polyforms different and different types of fixed point locus but give same results!

ds2 = dζ2 +
1
4

sin2 ζ cos2 ζ(dψ + cos θdϕ)2 +
1
4

sin2 ζ(dθ2 + sin2 θdϕ2)

ξ = b1∂ψ + b2∂ϕ

∂ψ ζ = 0 ζ = π
2

∂ϕ ζ = 0 ζ = π
2 θ = 0 ζ = π

2 , θ = π

Same cheating issue as the S2



(Useful) Applications 

Romans SUGRA



Euclidean Romans SUGRA

• 6d gauged supergravity theory.  

• Bosonic content: metric, dilaton ,  gauge fields + 2-form potential. 

• Preserve supersymmetry, need to solve Killing spinor equations . 

• Places constraints on metric and fields. “Torsion conditions” from spinor bilinears: 
. [Alday, Fluder,  Gregory, Richmond, Sparks]  

• Implies existence of a Killing vector  + conditions like . 

• Construct Polyforms using torsion conditions, e.g. .

X SU(2)

∇μϵ + . . . . = 0

P = − ϵ̄γ7ϵ

ξ d(XP) = −
1

2
ξ⌟F

ΦF = F − 2XP



Fixed points
• What are the possible fixed points? 

 

• Even dimensional sub manifolds of  

 

• On fixed point set the Killing spinor is chiral! . 

• In fact it is stronger: 

,    

F = {ξ = 0} ⊂ M6

M6

F = F0 ∪ F2 ∪ F4

ϵ |F = ϵ±

−iγ(2i−1)(2i)ϵ = σ(i)ϵ σ(i) = ± 1



Master formula
 

    

     

•  

• The on-shell action for any solution is given by the above! 

• Need to specify the weights, ’s and ’s.

I =
FS5

27 [ ∑
dim0

χ
(σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3)3

ϵ1ϵ2ϵ3

− ∑
dim 2

χ(σ(1)ϵ1 + σ(2)ϵ2)2

ϵ1ϵ2 ∫F2
[3c1(F) + (σ(1)ϵ1 + σ(2)ϵ2)( c1(L1)

ϵ1
+

c1(L2)
ϵ2

)]
+ ∑

dim 4
χσ(1) ∫F4

[3c1(F) ∧ c1(F) + 3σ(1)c1(F) ∧ c1(L1) + c1(L1) ∧ c1(L1)]

σ(1)σ(2)σ(3) = χ

σ c1(L)



Some technical stuff
• There are also conditions for the spinor to be well defined that one needs to 

impose. For two-dim fixed point set 

 

• Imposes the type of twist to preserve supersymmetry e.g a “topological twist”. 

• Similar condition for four-dim fixed point set but more complicated.  

  

• Plug into on-shell action. For dim 0 and dim 2 purely topological result. For dim 4 
need information about magnetic charges.

∫Σg

c1(F) = σ(1) ∫Σg

c1(L1) + σ(2) ∫Σg

c1(L2) − σ(3)χ(Σg)

2ηχ(B4) + 3τ(B4) = ∫B4

(σ(1)c1(L1) + c1(F))2



Example 1

• Take .  

• Conformal boundary is .  

• Dual to twisted compactification of 5d SCFTs on , placed on squashed . 

• Write  with  rotating the two copies, take . 

• Take . Fixed point set:  at centre of . 

Plug everything in!

M6 = ℝ4 × Σg

S3
b × Σg

Σg S3
b

ℝ4 = ℝ2 ⊕ ℝ2 ∂ϕi
c1(Li) = 0

ξ = b1∂ϕ1
+ b2∂ϕ2

F2 = Σg ℝ4

5d SCFTs on a Riemann surface



 

 

 

         

I =
FS5

27 [ ∑
dim0

χ
(σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3)3

ϵ1ϵ2ϵ3

− ∑
dim 2

χ(σ(1)ϵ1 + σ(2)ϵ2)2

ϵ1ϵ2 ∫F2
[3c1(F) + (σ(1)ϵ1 + σ(2)ϵ2)( c1(L1)

ϵ1
+

c1(L2)
ϵ2

)]
+ ∑

dim 4
χσ(1) ∫F4

[3c1(F) ∧ c1(F) + 3σ(1)c1(F) ∧ c1(L1) + c1(L1) ∧ c1(L1)]

ϵi = bi

∫Σg

c1(F) = σ(1) ∫Σg

c1(L1) + σ(2) ∫Σg

c1(L2) − σ(3)χ(Σg)



Example 1

 

• Matches field theory results! 

• Easy in the end, just plugging things into the mater formula. 

• No solving equations of motion!

I =
FS5

9
χ(Σg)σ(1)σ(2) (b1 + σ(1)σ(2)b2)2

b1b2

5d SCFTs on a Riemann surface



Example 2

•  “Schwarzschild like solution” a.k.a Black Saddle 

• Conformal boundary is .  

• Dual to 5d SCFT on . 

•  with  rotating  

• Fixed point set  at centre of . Set  again. 

Plug everything in!

M6 = ℝ2 × B4

S1 × B4

B4

ξ = b∂ϕ ∂ϕ ℝ2

F = B4 ℝ2 c1(L) = 0

Black saddle



 

 

 

        

I =
FS5

27 [ ∑
dim0

χ
(σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3)3

ϵ1ϵ2ϵ3

− ∑
dim 2

χ(σ(1)ϵ1 + σ(2)ϵ2)2

ϵ1ϵ2 ∫F2
[3c1(F) + (σ(1)ϵ1 + σ(2)ϵ2)( c1(L1)

ϵ1
+

c1(L2)
ϵ2

)]
+ ∑

dim 4
χσ(1) ∫F4

[3c1(F) ∧ c1(F) + 3σ(1)c1(F) ∧ c1(L1) + c1(L1) ∧ c1(L1)]

2ηχ(B4) + 3τ(B4) = ∫B4

(σ(1)c1(L1) + c1(F))2



Example 2

 

• For any choice of . Result is purely topological! 

• Result not noticed before. 

• To compare with literature let . 

•  and  

I =
FS5

9 (2χ(B4) + 3ητ(B4))
B4

B4 = Σg1
× Σg2

τ(Σg1
× Σg2

) = 0 χ(Σg1
× Σg2

) = χ(Σg1
)χ(Σg2

)

I =
8FS5

9
(1 − g1)(1 − g2)

Black saddle



Example 3

• Chemical potential for angular momentum.  

•  is fancy for  plus  with magnetic charge  for  over . 

•  

• Fixed point set at centre of each  and poles of   2 fixed points. 

•  

• Weights a bit more difficult now but easy to compute with toric geometry. 

𝒪(−p) ℝ2 dϕ → dϕ + A −p A S2

ξ = b1∂ϕ1
+ b2∂ϕ2

+ b∂ψ

ℝ2 S2 ⇒

∫S2

c1(Li) = − pi

𝒪(−p1) ⊕ 𝒪(−p2) → S2



Some toric geometry
• Toric diagram for 

 

• Faces label where a circle shrinks.  

• Each face has an associated vector 

• Also associated to each face the 
sign . 

• The  is in orange.  

•  are the vectors for the  
factors.

𝒪(−p1) ⊕ 𝒪(−p2) → S2

σ

S2

v2, v4 𝒪(−pi)

σN
3

σS
3

σ1
σ2



 

 

 

        

I =
FS5

27 [ ∑
dim0

χ
(σ(1)ϵ1 + σ(2)ϵ2 + σ(3)ϵ3)3

ϵ1ϵ2ϵ3

− ∑
dim 2

χ(σ(1)ϵ1 + σ(2)ϵ2)2

ϵ1ϵ2 ∫F2
[3c1(F) + (σ(1)ϵ1 + σ(2)ϵ2)( c1(L1)

ϵ1
+

c1(L2)
ϵ2

)]
+ ∑

dim 4
χσ(1) ∫F4

[3c1(F) ∧ c1(F) + 3σ(1)c1(F) ∧ c1(L1) + c1(L1) ∧ c1(L1)]

{ϵ1, ϵ2, ϵ3} = {{b1, b2, b3} North pole
{b1 + p1b3, b2 + p2b3, − b3} South pole



Example 3

 

• Completely new result! No SUGRA solution nor field theory results! 

• Has the form of gravitational blocks, like holomorphic blocks from SUSY 
localisation.  

• “Twist” or “anti-twist” depending on whether . 

• Reduces to Example 1 for .

I =
FS5

27
σ(1)σ(2)( σ(3)

N (σ(1)b1 + σ(2)b2 + σ(3)
N b3)3

b1b2b3
−

σ(3)
S (σ(1)(b1 + p1b3) + σ(2)(b2 + p2b3) − σ(3)

S b3)3

(b1 + p2b3)(b2 + p2b3)b3 )

σ(3)
N = ± σ(3)

S

pi = 0, b3 = 0, g = 2

𝒪(−p1) ⊕ 𝒪(−p2) → S2



Conclusion
• Equivariant localisation gives a powerful method for computing certain holographic 

observables.  

• Only requires an isometry to apply, for SUSY solutions this is often present (R-sym).  

• Applied to Romans SUGRA, recovered old results and found new predictions.  

• Hidden subtleties: Existence of actual solutions? Odd-dim works slightly different 
(need 2 U(1)’s). SUSY needed to construct polyforms.  

• Many ways to extend: Higher derivative corrections, different matter content, 
boundaries, exact matches with field theory?



Thank you!





 more detailsℂℙ2

• For  the polyform is: 

 

• Here  is an arbitrary constant, it will drop out! 

• Fixed point has weights:  

• Bolt has weights: . 

 

         

∂ψ

Φ = vol(ℂℙ2) −
1
8

sin3 ζ cos ζdζ ∧ Dψ +
sin4 ζ + c

32
c

b1 = b2 = 1
2

b1 = 1
2

Vol =
(2π)2

(1/2)2
(Φ0 |ζ=

π
2

) +
2π
1/2 (∫S2

Φ2 − Φ0 |ζ=0 ∫S2

c1(ℒ))
= π2

2


