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Introduction

Solving Einstein’s equations is hard!
But sometimes it is not necessary!
Some AdS/CFT observables are just integrals over (sub-)spaces of spacetime.

E.G. the on-shell action should give the large N index in field theory.
INJ vol(M)(R+....)
M

Looks very dependent on knowing the metric.....



Introduction

* Equivariant Localization gives a way to compute these without knowing the metric! [Benetti-
Genolini, Gauntlett, Sparks]

* Rough Idea:
O Spacetime with a symmetry.

O Integrals only receive contributions from symmetry fixed points.

M f.p.

Remarks:
* Don’t need to know explicit solution.
* Result depends on topology.

* Uniform method for obtaining results.



Equivariant Localization



Equivariant Cohomology

Interested in computing integrals over manifolds with a symmetry group.
Consider a 2n-dimensional manifold without boundary.
¢ a Killing vector field:
Z24=0 < V. +V,E =0
Assume that it generates a U(1) isometry.

We are interested in integrating forms, ® which satisfy



Equivariant Cohomology

We replace cohomology with equivariant cohomology.

Exterior derivative replaced by twisted derivative
d—>d.-=d-¢,
Forms are replaced by poly-forms, these are just forms of mixed degree.
O=0D +D ,+...+ D,
In general d; is not nilpotent: dé =—Z

Restrict to equivariant polyforms: Z.® = (), then d; is nilpotent.



Equivariant Cohomology

Can define &-equivariant de Rham cohomology.
Equivariantly closed it d,® = 0.

do, =0, (D, =dD, ,, ... &P, =dD,
Equivariantly exact if @ = d Y.

n’'th -equivariant cohomology group is

ker(d,) | \Z(M)
im(dy) | A2 (M)

For freely acting groups is ordinary cohomology on M/G.

HI!(M) =



Equivariant Cohomlogy

Equivariant integrals over M are defined as integrals over the top form of

J @EJ D,
M M

Can add an equivariantly exact poly-form without changing result.

[@rao=] o
M M

Integrals depend only on the equivariant cohomology class.

equivariantly closed form ®:

Top form is closed but not exact.



Equivariant integrals localise

Integrals localise to fixed points of the symmetry.
M.={xeM|c| =0}

We are free to modify intervals by equivariantly exact pieces.

[ CI)=[ @tEJ Peld:’
M M M

Where f is some ¢-equivariant polytorm: Z . = 0.

d(I)—(I)d def — ®
E t = (gﬁ)e = g(ﬁ/\ )

Difference is equivariantly exact! Integrals are the same for all .



Equivariant integrals localise

For t = 0 we have the original integral, but we can evaluate for any 1.

It d:/|,_torm iS semi-negative definite with maximum equal to o and we take

t — oo limit the integral localises to the minima.

Take f = n = g(&, » ) then we have:

J D = limJ ded1e—1E" = lim
M M

[— 0 [— 00

2
The e~!l¢I” acts as a delta function onto M 5!

) 1

—t|¢] k___

J e D A E (tdn) T
M &



Isolated fixed points

Integrals localise, but how do we compute the contributions?

Assume the localisation locus M; is a set of fixed points: M, =

Zoom in near such a fixed point, p using Cartesian coordinates

X, =r;cosQ;,y, =rsing;i € {1,..,n} with origin at p.

Locally metric reads:

ds? ~ Z (dxl-2 + dyiz) = 2 (drl.2 + rl.zdg/)l.z)
i=1 i=1

Killing vector takes the form

{x.}.E.g. S




Isolated fixed points

* The circle action generated by & acts on the 7’'th eigenspace as:

A cos(bP¢;))  sin(bl¢h,) X:
(yi> - —sin(bf'¢p;) cos(b’¢;) (Yi)

» Can also compute 7, for us d.# is locally given by:
dag = ) bPA(r}) Adgy— ) (BF)*r?
i=1 i=1

» Remains to plug all this into the integral for @..



Isolated fixed points

* The final result is:

2 00
lim j ® = lim CDO(p)H th? J' dgbiJ drl.ze‘f(bf )i
N

[— 0 [— 0
, 0 0

* This is just a Gaussian integral!

[ O = Dy(p)
N

P

(27)"
[T, 0!

* We now just add up all the contributions from fixed points!




Beyond isolated fixed points

One does not need to have just isolated fixed points.

E.g. The Schwarzschild metric.
ds? = — f(rdt* + f(r)~1dr? + r’ds?(S?)
At the horizon f(r;,) = 0 and it locally looks like

ds® =~ ds*(R"") + r;ds*(S%)

The Killing vector & = 0, has a bolt at the horizon. A whole S~ is fixed by the action.
Need to take into account other fixed point loci.

Can have fixed point sets of dimension 0,2,4,....



BVAB theorem

* Can apply a similar logic to work out these contributions, result is the

* BVAB theorem: [Berline, Vergne 82, Atiyah, Bott 84].

The integral of an equivariantly closed form localises to fixed points of symmetry.

f*q) Pullback to 2 of ®
What we care about (I) — Z
M e:(N)

¥ >

Euler form of normal bundle

Sum over fixed point set

* This looks a bit scary but it is not.



[
BVAB Theorem ‘3/\

- What is a fixed point set? * Somewhere where the action acts

trivially, & = O there.

* Bundle of pkoints normal to fixed point

set: S = Zgiél 2k
i=1

 What is the normal bundle?

» edN)? * The Euler class of the normal bundle.
k
€.
N) = | | [ & .+—l]




BVAB

The full gory details: O.Q
J o (27)" Filo
- k k 7
My, 2 Hi=1 € 7X Hi=1 [1 T 2?icl(‘fzi)]

1 Q2x) 1 Qr)"!
B Z dp, €] ...€, Pot Z dp, € . J'¢2 o Z _.Cl(g)]

dlmz €n—1 1<i<n—1 ¢

€; €€;
1<i<n-2 ! 1<i<j<n-2 tJ

n—2 2
T Z : (Z]i) J[®4_®2A Z Ecl(gi)'l‘q)o Z i 01(31')/\61(—2,')] +



This is cheating a bit, we know the metric.
This is a problem with the example.

S? example
o ds? = db* + sin” 0d¢?

. V01=J sin6’d9/\d¢zj ()
s2 s2

* ¢ = 0, Need polyform:

° fJ(DZ — d(I)O — dCOSH

* Two fixed points at poles of sphere.

2T 2T

€N €s

= 27(cos(0) — cos(xw)) = 4rn /




Same cheating issue as the S?

CP* Example

Consider the metric

1 1
ds? = d&? + n sin? ¢ cos? {(dy + cos Odg)? + " sin” £(dO? + sin’ 6d¢?)

Choice of Killing vector ¢ = b,9,, + b,0d,. Difterent types ot fixed point sets!
For d,, fixed pointat ¢ = 0 and bolt at ¢ = %

For d, 3 fixed points at (§ = 0), (¢ = %, 0 =0)and ({ = %, 0 = n).

Polyforms different and different types of fixed point locus but give same results!




(Useful) Applications

Romans SUGRA



Euclidean Romans SUGRA

6d gauged supergravity theory.
Bosonic content: metric, dilaton X, SU(2) gauge fields + 2-form potential.

Preserve supersymmetry, need to solve Killing spinor equations V e+ .... =0.
Places constraints on metric and fields. “Torsion conditions” from spinor bilinears:

P = — €y-¢e. [Alday, Fluder, Gregory, Richmond, Sparks]

Implies existence of a Killing vector & + conditions like d(XP) = — 75 L.
2

Construct Polyforms using torsion conditions, e.g. ®" = F — \/EXP.



Fixed points

What are the possible fixed points?

F =

16 =0} C Mg

Even dimensional sub manifolds of M

On fixed point set the Killing spinor is chirall €| . = €.

In fact it is stronger:

—l]/

(2i—1)(2i)

€ = a(i)e, o) =+ 1



Master formula

_Fs Z . (6We, + 6Pe, + 6Vey)’
27 | A €16-€
dlmgl) (2) 21 .
c e, + 0 € c(L ¢ (L
— Z A 1 ) [ l3Cl(F)+(6(1)€1+6(2)€2)< (L) + 1( 2))]
dim 2 €1€2 F, €1 €
+ 2 ;(amj l3cl(F) A c;(F) + 36We (F) A ci(L) + ¢;(L)) A cl(Ll)]
dim 4 Fy
o 6660 =

* The on-shell action for any solution is given by the above!

* Need to specify the weights, 6’s and ¢;(L)’s.



Some technical stuff

There are also conditions for the spinor to be well defined that one needs to
impose. For two-dim fixed point set

J c(F) = U(I)J ci(Ly) + 0(2)J ci(Ly) — 0(3))((2g)
) >

g g 28

Imposes the type of twist to preserve supersymmetry e.g a “topological twist”.

Similar condition for four-dim fixed point set but more complicated.

2ny(By) + 37(B,) = J (0(1)01(L1) T C1(F))2
by

Plug into on-shell action. For dim o and dim 2 purely topological result. For dim 4
need information about magnetic charges.



Example 1

5d SCFTs on d Riemann surface

Take M6 — |. 4 X Zg.

Conformal boundary is Sg X 2,

Dual to twisted compactification of 5d SCFTs on 2, placed on squashed Sg .

Write R* = R? @ R? with 0¢i rotating the two copies, take ¢;(L;) = 0.

4

Take ¢ = b0, + b,0, . Fixed point set: F;, = 2, at centre of |

Plug everything in!



dimo

€1€7€3

Z ){(6(1)61 -+ 0(2)62)2

dim 2
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Example 1

5d SCFTs on d Riemann surface

(b; + 6V Pb,)?
bb,

Fs
_ (1) +(2)
[ = 5 )((Zg)(f o

* Matches field theory results!
* Easy in the end, just plugging things into the mater formula.

* No solving equations of motion!



Example 2

Black saddle

M, = R* X B, “Schwarzschild like solution” a.k.a Black Saddle

Conformal boundary is §! X B,.

Dual to 5d SCFT on B,.

2

£ = bo,, with 0, rotating

Fixed point set F' = B, at centre of | 2. Set c(L) = 0 again.

Plug everything in!



dimo 1€2€3

){(0(1)6 _|_ 0(2)6 )2

dim 2 €165 ,

dim 4

2ny(By) + 3t(B,) = J
By




Example 2

Black saddle

[ =

Fos

9

(2)( (By) + 3777(34))

For any choice of B,. Result is purely topologicall

Result not noticed before.

To compare with literature let By = 2, X 2, .

T(Zg1 X Zgz) = () and )((Zgl X Zgz) = )((Zgl))((Zgz)

] =

SF s

9

(I =gl —g,)



Example 3

O(—p,) @ O(—p,) — §°

Chemical potential for angular momentum.

O(—p) is fancy for R? plus dp — d¢p + A with magnetic charge —p for A over S°.
5 — b18¢1 + bza¢2 + b@w

Fixed point set at centre of each R? and poles of S? = 2 fixed points.
J ci(L;) = —p;
S2

Weights a bit more difficult now but easy to compute with toric geometry.



Some toric geometry

Toric diagram for
O(—p,) ® O(-p,) — S°

Faces label where a circle shrinks.

Each face has an associated vector

Also associated to each face the
sign o.

The S? is in orange.

V,, V4 are the vectors for the O(—p,)
factors.




_I_

€], €, €3} =

dim 2

1m4
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Example 3

O(—p,) @ O(—p,) — §°

I Eg(l)a(z) ( U](\?)<6(1)b1 + U(Z)bz + Gﬁ)b3>3 5 6§3)<6(1)(b1 +p1b3) + 0(2)(192 +p2b3) — 0§3)b3)3 )
27 b1b,yb5 (b1 + p2b3)(Dy + pab3)bs

* Completely new result! No SUGRA solution nor field theory results!

* Has the form of gravitational blocks, like holomorphic blocks from SUSY
localisation.

« “Twist” or “anti-twist” depending on whether aﬁ) = & 0§3).

* Reduces to Exampleiforp, =0, b; =0, g=2.



Conclusion

Equivariant localisation gives a powerful method for computing certain holographic
observables.

Only requires an isometry to apply, for SUSY solutions this is often present (R-sym).

Applied to Romans SUGRA, recovered old results and found new predictions.

Hidden subtleties: Existence of actual solutions? Odd-dim works slightly different
(need 2 U(1)’s). SUSY needed to construct polyforms.

Many ways to extend: Higher derivative corrections, different matter content,
boundaries, exact matches with field theory?



‘Thank you!






For 9, the polyform is:

1
® = vol(CP?%) — —sin’ ¢ cos {dE A Dy A

CP* more details

3

Here c is an arbitrary constant, it will drop out!

Fixed point has weights: b, = b, = —

Bolt has weights: b; = 1

Vol

E.

7'[2

2

(27)°

(1/2)?

1
2

(P,

2T
z )

2

1/2

(I

sin* ¢ + ¢

32

(DZ o (DO ‘gzoj
2 S

C1(°CZ))




