Quantum Gravity and Extremal Black Holes

Calvin Y.-R. Chen National Taiwan University 18th Dec 2024 ITMP Seminar

Quantum Gravity and Extremal Black Holes

mostly based on 2408.05549 in collaboration with C. de Rham and A. J. Tolley

Effective Field Theory of Gravity

General relativity accurately describes gravity across various scales...

...but predicts its own breakdown: Need UV completion!

Effective Field Theory perspective: Use most general local action

1) consistent with symmetries,

2) organised in derivative expansion, and

3) with coefficients fixed by dimensional analysis.

 $\Lambda, s \geq 2$

→ Treat as **standard QFT** (careful about breakdown!)

Challenge: Decoupling/separation of scales cause suppression of UV effects/EFT corrections!

Successful efforts using knowledge about UV to constrain possible EFT operators.

Goal: Study set-up where leading-order effect accidentally vanishes!

Charged Black Holes

Charged Black Holes

• **Gravity** + **Maxwell** in *D* dimensions

$$S_{\rm EM} = \int d^D x \sqrt{-g} \left[\frac{1}{2\kappa} \left(R + \frac{(D-2)(D-1)}{L^2} \right) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

 \rightarrow Asymptotically flat limit when $L \rightarrow \infty$.

• Spherically symmetric and static **background solutions**

Extremal Black Holes

• Solution possesses two real horizons. For AF RN:

$$r_{\pm} = \frac{M}{2} - \sqrt{\left(\frac{M}{2}\right)^2 - Q^2}$$

→ Degenerate to extremal horizon $r_H := r_+ = r_-$ in extremal limit.

• Extremal near-horizon geometry is leading-order in ρ/r_H :

$$ds^{2} = \frac{2}{f''(r_{H})} \left[-\rho^{2} \left(\frac{f''(r_{H})}{2} dt \right)^{2} + \frac{d\rho^{2}}{\rho^{2}} \right] + r_{H}^{2} d\Omega_{a}^{2}$$

i.e. $\operatorname{AdS}_2 \times S^d$!

[Bertotti '59; Robinson '59]

 $\rho = r - r_+$

 \rightarrow Generic to extremal black holes!

[Kunduri, Lucietti, Reall '07]

Smooth Horizons

• Degenerate horizon of extremal AdS-RN is **smooth**.

 \rightarrow Is this a generic feature of extremal black holes?

No.

Consider multi-black hole solutions

[Majumdar '47; Papapetrou '47]

$$ds^{2} = -H^{-2}dt^{2} + H^{2/(D-3)}\delta_{ij}dx^{i}dx^{j}, \quad H = 1 + \sum_{n=0}^{N} \frac{M_{n}}{|\mathbf{x} - \mathbf{x}_{n}|^{D-3}}$$

- Recover AF RN in isotropic coordinates for N = 0.
- Take $\mathbf{x}_0 = \mathbf{0}$ as reference and zoom in on $\hat{\rho} := |\mathbf{x}| = 0$ (its horizon).

$$ho \propto \hat{
ho}^{D-3}$$

Smooth Horizons

• Metric at leading order:

$$\begin{split} \mathrm{d}s^2 &= \left(\frac{\rho}{L}\right)^2 \mathrm{d}t^2 + \left(\frac{L}{\rho}\right)^2 \left[1 + (D-3)g(\rho) + (D-3)^2 \frac{\mathrm{d}g(\rho)}{\mathrm{d}\log\rho}\right] \mathrm{d}\rho^2 \\ &+ r_0^2 \left[1 + 2(D-3)g(\rho)\right] \mathrm{d}\Omega_{D-3}^2 \end{split}$$

with **perturbation**

$$g(\rho) \sim \sum_{m=1}^{\infty} c_m \rho^{1 + \frac{m}{D-3}}$$

 \mathbf{a}

- \rightarrow View these as static deformations of single extremal black hole.
- In D = 4: Scaling in integer powers, so horizon is smooth. [Welch '95]
- In D ≥ 5: Scaling exponents generically non-integer. Curvature invariants don't diverge, but tidal forces on infalling observers diverge → mildly singular!
 [Candish & Reall '07; Gowdigere, Kumar, Raj, Srivastava '14]

Can we study these more systematically?

Extremal Black Holes as Deformations

Deformations

• Decompose metric $\sqrt{\kappa}h := g - \bar{g}$ and gauge field $\delta F := F - \bar{F}$ perturbations with respect to spherical symmetry.

 \rightarrow Decoupled master equations for gauge-invariant "master variables" labelled by harmonic ℓ universally take the form

$$2\partial_v \partial_r \phi + \partial_r (f \partial_r \phi) - U(r)\phi = 0$$

with effective potentials U.

[Kodama, Ishibashi, Seto]

→ Interested in *stationary perturbations* to *near-horizon* regions of *extremal AdS-RN*!

[Horowitz, Kolanowski, Santos '22 & '23] [Gralla & Zimmermann '18]

• Focus on stationary solutions with

$$\partial_v \phi = 0$$

Deformations

• In the near-horizon limit, the equation of motion takes form

$$(\rho^2 + \beta \varepsilon \rho)\phi'' + (2\rho + \beta \varepsilon)\phi' - U_*\phi = 0, \quad U_* = \frac{2U(r)}{f''(r)}\Big|_{r=r_+} = m_{\text{eff}}^2 L_2^2 + \mathcal{O}(\varepsilon)$$

with

$$\varepsilon := \frac{r_+ - r_-}{r_+ + r_-}, \quad \beta := \frac{\varepsilon f''(r_+)}{2f'(r_+)} = \mathcal{O}\left(\varepsilon^0\right)$$

• In extremal limit, $\varepsilon = 0$ and solutions scale

$$h = c_{-}\rho^{\gamma_{-}} + c_{+}\rho^{\gamma_{+}}, \quad \gamma_{\pm} = \frac{1}{2}\left(-1 \pm \sqrt{1 + 4m_{\text{eff}}^2 L^2}\right)$$

→ Boundary conditions at $\rho = 0$ set $c_- = 0!$

• Tidally sourced asymptotically far away.

The Extremal Limit

Caveat: The **extremal** limit of the master equation is subtle. Tension with...

• **Stationary** limit: Classification of singular points changes.

→ Stationary limit first: Dynamical perturbations behave qualitatively different; deformations highly non-generic!

• Near-Horizon limit: Non-uniform convergence of $f^{-1}(\rho, \varepsilon)$ near origin

$$\lim_{\varepsilon \to 0} \left(\lim_{\rho/r_H \to 0} f^{-1} \right) \neq \lim_{\rho/r_H \to 0} \left(\lim_{\varepsilon \to 0} f^{-1} \right)$$

i.e. order of limits ambiguous.

→ Extremal limit last: View extremal solutions as extremal limit of sub-extremal solutions!

	$\omega \neq 0$	$\omega = 0$
sub.	r_{\pm} reg.	r_{\pm} reg.
	∞ irreg.	∞ irreg.
ext.	r_H irreg.	r_H reg.
	∞ irreg.	∞ irreg.

[Gubser '00]

The Extremal Limit

Can we recover the scaling behaviour from **extremal limit** of sub-extremal solutions?

• Solutions in the sub-extremal case

$$\phi = AP_{\alpha}(z) + BQ_{\alpha}(z)$$
 $z = 1 + \frac{2\rho}{\beta\varepsilon}, \quad \alpha = \sqrt{1 + 4U_*}$

• Expanding near horizon

$$\phi \sim A\left[1 + \frac{1}{2}\alpha(\alpha - 1)(z - 1) + \dots\right] + B\left[c - \frac{1}{2}\log(z - 1) + \dots\right]$$

→ Regularity requires $B = 0$.

• Extremal limit $\tilde{\alpha} = \alpha(\varepsilon = 0)$

$$\phi \sim A \left[\frac{\Gamma(-1-2\tilde{\alpha})}{\Gamma(-\tilde{\alpha})^2} \left(\frac{\beta \varepsilon}{\rho} \right)^{-\gamma_-} + \dots + \frac{\Gamma(1+2\tilde{\alpha})}{\Gamma(\tilde{\alpha})^2} \left(\frac{\beta \varepsilon}{\rho} \right)^{-\gamma_+} + \dots \right]$$

→ Indeed picks out γ_+ solution.

Singularities

Scaling in terms of original metric perturbations is $h_{\cdot \cdot} \sim \rho^{\gamma}$.

• Scalar invariants on deformed geometry scale as:

 \rightarrow Scalar polynomial **singularity** when $\gamma < 0$.

• Perturbations to the Weyl tensor scale as:

$$\delta C_{\cdots} \sim \rho^{\gamma - 2}$$

 $S \sim \rho^{n\gamma}, \quad n \in \mathbb{N}^+$

Tidal force on particles travelling along geodesics of deformed background. Artefact of **geodesic approximation**/breakdown of wordline EFT.

[Horowitz, Kolanowski, Remmen, Santos '24]

Extremal Black Holes in GR

We will focus on **curvature singularities**.

- Can find expressions for scaling exponents of gravito-electromagnetic perturbations in GR. In $D \ge 5$:
 - Tensor, vector, and electromagnetic scalar modes **positive-definite**.
 - Gravitational scalar modes are singular down to $\gamma = -1/2$ for either
 - a) any r_H/L and $\ell < D-3$,

b) any fixed ℓ provided sufficiently large r_H/L .

E.g. in D = 11

Marginal Deformations

Scaling exponents cross through zero!

→ Marginal deformations: Naïvely, presence of singularity sensitive to EFT corrections.

• For gravitational scalar modes: Tower of marginal deformations at

$$\frac{r_H^2}{L^2} = \frac{D-2}{D-4} \left[-1 + \frac{1}{2(D-3)^2} \ell(\ell+D-3) \right]$$

- *E.g.* for AF RN $\ell = D 3$ is marginal.
- Non-linearly, all modes are generically excited!
 - D = 5 AF RN is non-linearly marginal: Lowest non-trivial mode $\ell = 2$ marginal and higher modes non-singular!

EFT Corrections

Deformations in the EFT of Gravity

Parameterise corrections from UV with higher-derivative **EFT corrections**

 $S = S_{\rm EM} + S_{\rm EFT}$

• Due to rigidity of near-horizon geometry:

$$h_{\cdot \cdot} \sim \rho^{\gamma}, \quad \gamma = \gamma_{\rm GR} + \gamma_{\rm EFT}$$

 \rightarrow EFT correction **resums** into exponent

Specifically:

$$S_{\rm EFT} = \int d^D x \sqrt{-g} \sum_{\mathcal{O}} \frac{c_{\mathcal{O}}}{\Lambda^{[\mathcal{O}]} - D} \mathcal{O} \quad \longrightarrow \quad \gamma_{\rm EFT} = \sum_{\mathcal{O}} c_{\mathcal{O}} \gamma_{\mathcal{O}}$$

• Marginal case: When $\gamma_{\rm GR}=0$, singularity of horizon sensitive to sign of

 $\hat{\gamma} := \gamma_{\rm EFT} \big|_{\gamma_{\rm GR} = 0}$

Example: EFT Correction

Specific yet generic **EFT correction**

$$S = S_{\rm EM} + \frac{\kappa c}{\Lambda^2} \int d^5 x \sqrt{-g} (F_{\mu\nu} F^{\mu\nu})^2.$$

• Static and spherically symmetric **background** solutions with

$$A(r) = B(r) = f(r) - \frac{c}{\Lambda^2} \frac{12Q^4}{r^{10}}, \quad \Psi(r) = \frac{q}{r^2} - 16c \frac{\kappa}{\Lambda^5} \frac{q^3}{r^8}$$

- Changes to: Extremality relation and near-horizon geometry (same isometry)
- → Perturbation equations take same form (with shifted background) shift in effective mass!
 - Marginal deformations for every harmonic

$$\hat{\gamma} = -\frac{c}{\Lambda^2 r_H^2} \frac{72k_S^2(k_S^2 - 4)^2}{15k_S^4 - 128k_S^2 + 256}$$

Presence of curvature singularities on horizon depends on UV physics!

Is this a breakdown of EFT?

Breakdown of Breakdowns

- Can estimate the ranges of validity for different approximations used.
 - **EFT expansion** (at quadratic order in metric perturbation)

$$S \supset \frac{1}{\kappa} \int \mathrm{d}^D x \sqrt{-g} \sum_{p=0,q=0}^{\infty} \left(\sqrt{\kappa}h\right)^2 \left(\frac{\nabla}{\Lambda}\right)^p \left(\frac{\mathrm{Rie}}{\Lambda^2}\right)^q$$

under control when

$$r_H \Lambda \gg 1, \quad h \sim h_0 \rho^\gamma \ll \frac{1}{\gamma} (\Lambda r_H)^2$$

• Metric perturbation series

$$S \supset \frac{1}{\kappa} \mathrm{d}^{D} x \sqrt{-g} \sum_{m=2}^{\infty} \nabla^{2} \left(\sqrt{\kappa} h \right)^{m}$$

under control when

$$h \sim h_0 \rho^\gamma \ll 1$$

\rightarrow Metric perturbation theory out of control before EFT breaks down!

Example: UV Avatar

Illustrate example: Einstein-Maxwell-Dilaton system

$$S_{\rm EMD} = \int \mathrm{d}^D x \sqrt{-g} \left(\frac{1}{2\kappa} (R - 2\Lambda) - \frac{1}{4} e^{\alpha\phi} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi - \frac{1}{2} m^2 \phi^2 \right)$$

- Near-horizon geometry in previous example is exact background solution in this theory!
- Perturbation equations take same form with shifted mass → corrections to scaling exponents.
 - For marginal deformations

$$\hat{\gamma} = -\frac{3k_S^2(k_S^2 - 4)^2}{4(15k_S^4 - 128k_S^2 + 256)} \left(\frac{4\alpha^2/\kappa}{r_H^2 m^2 + k_S^2} - \frac{1}{r_H^2 m^2}\right)$$

 \rightarrow Possesses interesting features!

Example: UV Avatar

- Good UV behaviour: Two-derivative theory, arises universally in supergravity!
- When $m^2 r_H^2 \gg 1$, tree-level effective action includes F^{2n} -terms (n > 1). At leading order, reproduce F^4 -correction from previous example with

$$c = \frac{\alpha^2}{32\kappa}, \quad \Lambda = m$$

- → This presents a **partial UV completion** of the EFT before!
- In EFT expansion, marginal scaling exponents manifestly negative at leading-order

$$\hat{\gamma} = -\frac{\alpha^2/\kappa}{r_H^2 m^2} \frac{9k_S^2 (k_S^2 - 4)^2}{4\left(15k_S^4 - 128k_S^2 + 256\right)} + \dots$$

→ Singularity already present in the UV! If EFT had broken down, would have expected details of UV completion to resolve this.

→ Still accurately describes UV theory!

Exactly when metric perturbations go out of control is UV sensitive.

A Conjecture

Leading EFT

EFT corrections in D = 5 up to four-derivatives

$$S_{\rm EFT} = \int d^5 x \sqrt{-g} \left[\frac{c_1}{\kappa \Lambda^2} R^2 + \frac{c_2}{\kappa \Lambda^2} R_{\mu\nu} R^{\mu\nu} + \frac{c_3}{\kappa \Lambda^2} R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \frac{c_4}{\Lambda^2} R F^2 \right. \\ \left. + \frac{c_5}{\Lambda^2} R_{\mu\nu} F^{\mu}_{\ \lambda} F^{\nu\lambda} + \frac{c_6}{\Lambda^2} R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \frac{\kappa c_7}{\Lambda^2} (F^2)^2 + \frac{\kappa c_8}{\Lambda^2} F_{\mu}^{\ \nu} F_{\nu}^{\ \rho} F_{\rho}^{\ \sigma} F_{\sigma}^{\ \mu} \right]$$

• Field-redefinition **invariant** combinations are c_3 , c_6 , and

$$c_0 = \frac{1}{2} \left[c_1 + 11c_2 + 31c_3 + 6c_4 + 12(c_5 + c_6) + 18(2c_7 + c_8) \right]$$

$$c_9 = c_2 + c_5 + c_8$$

• Previous near-horizon geometry is still exact solution (perturbatively in EFT).

→ Shift in effective mass and scaling exponents.

Weak Gravity Conjecture

When $L \to \infty$, this is constrained by the Weak Gravity Conjecture (WGC).

- Super-extremal black holes in tension with Weak Cosmic Censorship.
 - **WGC**: UV physics should allow super-extremal states to allow for decay without super-extremality:

$$\frac{A/2}{Q|} < 1$$

- For small black holes: Extremal charge-to-mass ratio should decrease with decreasing mass
 - At leading order (four derivatives), WGC implies

$$\frac{M/2}{|Q|} = 1 - \frac{1}{3\Lambda^2 r_H^2} c_0 \longrightarrow c_0 > 0$$

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

Near-Horizon Negativity

Examples (Einstein-Maxwell-Dilaton and scalar toy model) suggest following **speculative conjecture**...

• Near-Horizon Negativity: EFTs consistent with UV completions have

 $\hat{\gamma} \lesssim 0$

• For four-derivative corrections to Einstein-Maxwell, marginal scaling exponent is

$$\hat{\gamma} = -\frac{1}{\Lambda^2 r_H^2} \frac{64k_S^2}{256 - 128k_S^2 + 15k_S^4} \tilde{c}_0$$

with

$$\tilde{c}_0 = \frac{\left(k_S^2 - 4\right)^2}{16}c_0 + \frac{1}{64}\left(k_S^2 - 8\right)\left[c_3\left(72 - 21k_S^4\right) + 8\left(k_S^2 - 4\right)c_6\right]$$

Near-Horizon Negativity

→ Near-Horizon Negativity implies

 $\tilde{c}_0(\ell) > 0, \quad \forall \ell$

• For $L \to \infty$, marginal mode is $\ell = 2$

$$\tilde{c}_0(\ell = 2) = c_0 > 0$$

→ Reproduces (and hence strictly stronger than) AF WGC.

[Kats, Motl, Padi '07]

[Horowitz, Kolanowski, Remmen, Santos '23]

- Other bounds obtained from $\ell > 2$.
 - For instance, as $\ell
 ightarrow \infty$

$$\tilde{c}_{\infty} = \lim_{k_S \to \infty} \frac{\tilde{c}_0}{k_S^4} = \frac{4c_0 - 21c_3 + 8c_6}{64} > 0$$

Deformations of Extremal Black Branes

WIP in collaboration with A. D. Kovacs

Charged Black Branes

Can generalise the discussion to black branes in supergravity.

- Consider Gravity + form field $F_{(d+1)} = dA_{(d)}$: $S = \frac{1}{2\kappa} \int d^D x \sqrt{-g} \left[R - \frac{1}{2(d+1)!} F_{(d+1)}^2 \right]$
- Branes are solutions with isometry $\widetilde{d}=D-d-2$ $\mathrm{ISO}(1,d-1) imes\mathrm{SO}(\widetilde{d}+2)\subset\mathrm{ISO}(1,D-1)$

describing d = p + 1-dimensional world volumes.

• Metric for **extremal black branes**

 $\{\alpha, \beta, \dots, \rho\} \in \{0, \dots, d\}$

$$\mathrm{d}s^2 = H^{-2/d} \eta_{\alpha\beta} \mathrm{d}x^{\alpha} \mathrm{d}x^{\beta} + H^{2/\tilde{d}} \left(\mathrm{d}r^2 + r^2 \mathrm{d}\Omega_{\tilde{d}+1}^2 \right), \quad H(r) = 1 + \left(\frac{r_0}{r}\right)^{\tilde{d}}$$

 \rightarrow Reproduce AF RN in isotropic coordinates for p = 0.

Freund-Rubin Compactifications

• Near-horizon limit: Define $r = r_0 (\rho/L)^{d/\tilde{d}}$, and zoom in on $\rho = 0$

$$ds_{\rm NH}^2 = \frac{\rho^2}{L^2} \eta_{\alpha\beta} dx^{\alpha} dx^{\beta} + \frac{L^2}{\rho^2} d\rho^2 + d\Omega_{D-p-2}^2, \quad L/d = r_0/\tilde{d}$$

→ Freund-Rubin compactifications ($AdS_{d+1} \times S^{d+1}$): These are exact solutions to background equations of motion!

- **Regular** radial coordinates still linearly related to ρ .
- Perturbation equations: Decomposition on sphere results in decoupled AdS_{d+1} wave equations labelled by harmonic ℓ with shifted effective masses.

$$\Box_{\rm AdS}\phi - m_{\rm eff}^2\phi = 0$$

→ Effectively Kaluza-Klein reduction onto sphere.

Deformations of Extremal Black Branes

• Analogous class of **deformations** to near-horizon geometry have

$$\eta^{\alpha\beta}\partial_{\alpha}\partial_{\beta} = 0$$

• In extremal limit, solutions scale with **exponents**

$$\gamma_{\pm} = \frac{d}{2} \left(-1 \pm \sqrt{1 + \frac{4m_{\text{eff}}^2 L^2}{d^2}} \right)$$

- Discussion around extremal limit and explicit example from multi-centred black branes follow through.
- Full reduction of gravitational perturbations doable (and checked).
 - Tensor modes and EM vector and scalar modes positive definite
 - Gravitational vector and scalar modes can be singular down to $\gamma = -d/2$.

Summary

- UV sensitivity of extremal black holes
 - Deformations to near-horizon geometry are UV sensitive, but no breakdown of EFT!

→ Generalisation to **extremal black branes**!

• Implications for Aretakis instability of black branes.

[Cvetic, Porfirio, Satz '20]

- **Constraints** on EFTs
 - Near-horizon negativity (speculative): Generalisation of bound from WGC for leading EFT.

→ Physical intuition – Holography, energy conditions?

Thanks for your attention! Questions?