Quantum Gravity and Extremal Black Holes
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Quantum Gravity and Extremal Black Holes

u_."G_

(singularity)

r=10

(singulerity)

i"@

(singularity)

r=10

P

Surfaces
{t = constant)

(singularity) . .. r=0op

p I\ surfaces {r = constant)

I = constant

mostly based on 2408.05549 in collaboration with C. de Rham and A. J. Tolley



Effective Field Theory of Gravity



accurately describes gravity across various scales...

A

..but predicts its own breakdown: Need UV completion!



perspective: Use most general local action
1) consistent with symmetries,
2) organised in derivative expansion, and

3) with coefficients fixed by dimensional analysis.

V m
SEFT:MngdDCUV_g[ +A? Z Cmn (K) (

m>0,n>2

Suppressed by loops

~

A
- Treat as standard QFT (careful about breakdown!)

Riemann \ "
AQ



Challenge: Decoupling/separation of scales cause
suppression of UV effects/EFT corrections!



Successful efforts using knowledge about UV to constrain possible EFT operators.

8 Energy [Pham & Truong ‘85]
[Adams et al. ‘06]

Bootstrap/
Positivity Bounds




Goal: Study set-up where leading-order effect accidentally
vanishes!



Charged Black Holes



Charged Black Holes

in D) dimensions

Senm = /dD:U\/jg [i (R+ (D_ngD— 1)) 1 WFW]

- Asymptotically flat limit when L — oo.

* Spherically symmetric and static background solutions

4

d 2
ds? = —A(r)dt? + —— +r2d02, F = (r)dt Adr
B(r)
d=D — 2
— Anti-de Sitter Reissner-Nordstrom (AdS RN) 0 —
12 M Q? q
A(T) — B(T) — f(T) =1+ ﬁ o rD—3 + TQ(D—S)’ \Ij(fr) — rD—3



Extremal Black Holes

e Solution possesses two real For AF RN:
2
M M
T = — — — S 2
£= ( ; ) Q

—> Degenerate to extremal horizon rg := r, = r_ in extremal limit.

p=T7T—Ty

 Extremal near-horizon geometry is leading-order in p/rg : / /

ds? — — 2|2 dt2+di +r2.d02
- f"(rm) P p? H

I.e. AdSQ X Sd' ! [Bertotti ‘'59; Robinson ‘59]

—> Generic to extremal black holes!
[Kunduri, Lucietti, Reall ‘07]



Smooth Horizons

* Degenerate horizon of extremal AdS-RN is smooth.

= Is this a of extremal black holes?
No.
* Consider multi-black hole solutions [Majumdar ‘47; Papapetrou ‘47]
2 pr—2742 2/(D=3) 5 1i 1]
ds’ = —H %dt* + H 0i;dxtda, _1+Z’X_XR|D3

 Recover AF RN in isotropic coordinates for N = 0.

« Take xg = 0 as reference and zoom inon p := |x| = 0 (its horizon).

pox pPs



Smooth Horizons

 Metric at leading order:

ds? = (%)zdtQ + (%) [1+(D —3)g(p) + (D — 32 3900) | 42
+ 75 [1+2(D = 3)9(p)] dQ 3

with perturbation

oo

Q(P) ~ Z CmP1+DL_3

m=1

- View these as static deformations of single extremal black hole.
* In D = 4:Scaling in integer powers, so horizon is : [Welch ‘95]

* In D > 5: Scaling exponents generically non-integer. Curvature invariants don’t

diverge, but tidal forces on infalling observers diverge = mildly singular!
[Candish & Reall ‘07; Gowdigere, Kumar, Raj, Srivastava ‘14]



Can we study these more systematically?



Extremal Black Holes as Deformations



Deformations

» Decompose metric v/kh := g — g and gauge field §F := F — F perturbations with
respect to spherical symmetry.

— Decoupled for gauge-invariant “master variables” labelled by
harmonic ¢ universally take the form

20,0,¢ + &r»(f&p(b) - U(T)gb =0

with effective potentials U'. [Kodama, Ishibashi, Seto]

- Interested in stationary perturbations to near-horizon regions of extremal AdS-RN!

[Horowitz, Kolanowski, Santos '22 & 23]
[Gralla & Zimmermann ‘18]

* Focus on stationary solutions with

9,6 = 0



Deformations

* Inthe , the equation of motion takes form
2U (r
(0° + Bep)d” + (2p+ Be)¢’ —U.p =0, U, = f,,((r)) = mdg
’f’:?"_|_
with
o 1
£ T+ T_, B:: Ef,(’l“_|_) :O(EO)
re T 2/(r+)
* |n extremal limit, ¢ = 0 and solutions scale
1 2
h=c_p’=— +cip't, 7i:§(—1j:\/1+4meffL2)

—> Boundary conditionsat p =0 set c_ = 0!

* Tidally sourced asymptotically far away.



The Extremal Limit

Caveat: The extremal limit of the master equation is subtle. Tension with...

limit: Classification of singular points changes. w70 w=0
<ub r4 reg. ri reg.
. L _ . o0 irreg. 0o Irreg.
—> Stationary limit first: Dynamical perturbations behave | v imes. | v reg
qualitatively different; deformations highly non-generic! | coirreg. | oo irreg.

limit: Non-uniform convergence of f~(p,¢) near origin

lim( lim f_1>7é lim (limf_l)

e—=0 \ p/rg—0 p/rg—0 \e—=0

i.e. order of limits ambiguous.

—> Extremal limit last: View extremal solutions as extremal limit of sub-extremal
solutions! [Gubser ‘00]



The Extremal Limit

Can we recover the scaling behaviour from extremal limit of sub-extremal solutions?

e Solutions in the sub-extremal case

¢ = AP,(z) + BQa(2) z:1+@, o =+/1+ 4U,

* Expanding

1 1
¢~A[1+§a(a1)(z1)+...] + B [cilog(zl)Jr...]
— Regularity requires B = 0.

* Extremal limit 3 = ale = 0)
'(—1-2a - I'(1+2a o
(-1-28) (\ 7" TO+2) (ge\ T
(—a)* \»p
- Indeed picks out . solution.

O~ A




Singularities

Scaling in terms of original metric perturbationsis h.. ~ p”.

* Scalar invariants on deformed geometry scale as:
S~p" neNt

—> Scalar polynomial singularity when v < 0.

e Perturbations to the scale as:

5C.... ~ p1 7%
—> Parallel-propagated singularity when ~ < 2.

Tidal force on particles travelling along geodesics of deformed background.

Artefact of geodesic approximation/breakdown of wordline EFT.
[Horowitz, Kolanowski, Remmen, Santos 24]



Extremal Black Holes in GR

We will focus on curvature singularities.

e Can find expressions for scaling exponents of in GR.
In D > 5:

* Tensor, vector, and electromagnetic scalar modes positive-definite.

s
° ° O
* Gravitational scalar modes are tes 2t
singular down to v = —1/2 for either
2 e - -------- 0dd D
a)any rg/L and ¢ < D — 3, Even D
b) any fixed ¢ provided sufficiently = =
large 71 /L. L



E.g.in D =11




Marginal Deformations

Scaling exponents cross through zero!
- Marginal deformations: Naively, presence of singularity sensitive to EFT corrections.

* For gravitational scalar modes: Tower of marginal deformations at

2
H_ =~ (({+ D —
L2 D-4 +2(D—3)2(+ 3

e E.g.for AFRN ¢ = D — 3is marginal.

* Non-linearly, all modes are generically excited!

e« D=5AFRNis : Lowest non-trivial mode ¢ = 2 marginal and
higher modes non-singular!



EFT Corrections



Deformations in the EFT of Gravity

Parameterise corrections from UV with higher-derivative EFT corrections

S = + SEFT

 Due torigidity of near-horizon geometry:

h.~p?, v= + YEFT

— EFT correction resums into exponent

Specifically:

c
SEFT = /dDﬂ?v —QZA[O?_DO —  JEFT = ZCO’YO
O

O

: When var = 0, singularity of horizon sensitive to sign of

~



Example: EFT Correction

Specific yet generic EFT correction

S = Se + A2 dPzy/—g(F,, F")2.

e Static and spherically symmetric background solutions with
p , \Ij('l") — —= —

A(r) = B(r) = £(r) - L — liexs

* Changes to: Extremality relation and near-horizon geometry (same isometry)

s q K

— Perturbation equations take same form (with shifted background) — shift in effective
mass!

for every harmonic

. C
Y= 2 92
A=re,




Presence of curvature singularities on horizon
depends on UV physics!

Is this a ?



Breakdown of Breakdowns

* (Can estimate the ranges of validity for different approximations used.

(at quadratic order in metric perturbation)

1 D > 2 V P Rle a
sop o 3w (3) ()
p=0,q=0
under control when .
rgA > 1, h~ hyp'! < ;(ATH)Q

* Metric perturbation series
1 o0
S > =dPxy=g Y V*(Vkh)"
R m=2
under control when

h ~ hgp! <1

- Metric perturbation theory out of control before EFT breaks down!



Example: UV Avatar

lllustrate example: Einstein-Maxwell-Dilaton system

1 1 1 1
SEMD = / dPxv/ =g (%(R —2A) — Zec'“»’ﬁ15;,1,,15’%“/ — §vﬂ¢v~¢ — §m2¢2>

in previous example is exact background solution in this theory!

* Perturbation equations take same form with shifted mass = corrections to scaling
exponents.

* For marginal deformations

. 3k% (k3 — 4)? 40 /K 1
7T T 415k — 128k2 + 256)

2 | 1.2 2 02
rem? + k% r4m

— Possesses interesting features!



Example: UV Avatar

 Good UV behaviour: Two-derivative theory, arises universally in supergravity!

e When m2fr§{ > 1, tree-level effective action includes F?"-terms (n > 1). At leading order,
reproduce F*-correction from previous example with

Oé2

—_— — A:
¢ 32k’ m

—> This presents a partial UV completion of the EFT before!

* In EFT expansion, marginal scaling exponents manifestly negative at leading-order

. ok N
A = ’rlzqm2 .
> already present in the UV! If EFT had broken down, would have

expected details of UV completion to resolve this.



EFT doesn’t break down
—> Still accurately describes UV theory!

Exactly when go out of control is
UV sensitive.



A Conjecture



Leading EFT

EFT correctionsin D = 5 up to

. 5% C1 2 €2 v
SEFT —/d ZU\/Q[WR —l_WRMVRM -+

63 vpo
a2 Rupr B4 g

C5 0 VA Ce % o RC7 2\2 RCS v o
PRWF)\F +FRWWF“ Er +F(F) —I_FF” FVPFp F_H

* Field-redefinition invariant combinations are cs, cg, and

_I_

1
Co — 5 [Cl —+ 1162 + 3163 + 664 + 12 ((35 -+ C6) + 18 (267 -+ Cg)]

Cg = C2 1 C5 + Cg

* Previous near-horizon geometry is still exact solution (perturbatively in EFT).

— Shift in effective mass and scaling exponents.



Weak Gravity Conjecture

When L — oo, this is constrained by the
* Super-extremal black holes in tension with Weak Cosmic Censorship.

« WGC: UV physics should allow super-extremal states to allow ", |
for decay without super-extremality:

M /2
_/<1

.
-
-
#
.
-
-
-
.

* For small black holes: Extremal charge-to-mass ratio should decrease with decreasing mass

e Atleading order (four derivatives), WGC implies

M/2 1
W = 1 — A2T2 Co > Co > 0 [Arkani-Hamed, Motl, Nicolis, Vafa ‘06]
H




Near-Horizon Negativity

Examples (Einstein-Maxwell-Dilaton and scalar toy model) suggest following speculative
conjecture...

* Near-Horizon Negativity: EFTs consistent with UV completions have

¥ <0
* For four-derivative corrections to Einstein-Maxwell, is
1 64k% "

77 TA22, 256 — 128k2 + 15k%
with

50 — Cco + (kgv — 8) [63 + CG]



Near-Horizon Negativity

- Near-Horizon Negativity implies

60(6) >0, W/

* For L — oo, marginal mode is / = 2
60(622):C0>0

- Reproduces (and hence strictly stronger than) AF WGC.
[Kats, Motl, Padi ‘07]
[Horowitz, Kolanowski, Remmen, Santos 23]

obtained from /¢ > 2.

 Forinstance, as ¥ — oo

- . 6() 4(30 — 21(33 + 8(36
0 T oo ki 64 ~




Deformations of Extremal Black Branes

WIP in collaboration with A. D. Kovacs



Charged Black Branes

Can generalise the discussion to black branes in supergravity.

e Consider Flay1y = dAg):
1 D 1
S=— [d"zy/—g|R— F?
2k A [ 2(d+ 1) (@D
* Branes are solutions with isometry .
d=D —d— 2

ISO(1,d — 1) x SO(d +2) c ISO(1,D — 1)

describing d = p + 1-dimensional world volumes.

e Metric for extremal black branes

~ i
ds? = H™ 2/, pdz®da® + B (dr® + 72402, ), H(r) =1+ (%)

— Reproduce AF RN in isotropic coordinates for p = 0.



Freund-Rubin Compactifications

* Near-horizon limit: Define rr = fro(p/L)d/‘i, and zoominon p =0

2 2
p o L .
ﬁna@»dx dzP + p—2dp2 + dﬂ%_p_Q, L/d=ry/d

=> Freund-Rubin compactifications (AdS;1 X Sg+1 ): These are exact solutions to
background equations of motion!

2 _
dsyy =

* Regular radial coordinates still linearly related to p.

: Decomposition on sphere results in decoupled AdS;, 1 wave
equations labelled by harmonic ¢ with shifted effective masses.

Oaas® — magd = 0

- Effectively Kaluza-Klein reduction onto sphere.



Deformations of Extremal Black Branes

* Analogous class of deformations to near-horizon geometry have
n*P 0,05 = 0

* |n extremal limit, solutions scale with exponents

d \/ 4m?2, L2
= — | —1£4/1 ¢

* Discussion around and explicit example from
follow through.

* Full reduction of gravitational perturbations doable (and checked).
* Tensor modes and EM vector and scalar modes positive definite

* Gravitational vector and scalar modes can be singular down to v = —d/2.



Conclusion



Summary

* UV sensitivity of extremal black holes
 Deformations to near-horizon geometry are UV sensitive, but no breakdown of EFT!
- Generalisation to !
* Implications for Aretakis instability of black branes. [Cvetic, Porfirio, Satz 20]
* Constraints on EFTs

* Near-horizon negativity (speculative): Generalisation of bound from for leading
EFT.

- Physical intuition — Holography, energy conditions?



Thanks for your attention!
Questions?
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