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Why are we here? Conformal field theories

extrema of the RG flow critical phenomena
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Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits where
they become simple and solvable.

()

No parameter of the theory can be dialed to a
simplifying limit.
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Why are we here? Conformal field theories are hard

In presence of a symmetry there can be sectors of the theory where
anomalous dimension and OPE coefficients simplify.
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The idea

/~ /_/

Study subsectors of the theory with fixed quantum number Q.

i

In each sector, a large Q is the controlling parameter f :
in a perturbative expansion.
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no bootstrap here!

This approach is orthogonal to bootstrap.
We will use an effective action.

We will access sectors that are difficult to
reach with bootstrap.

(However, arXiv:1710.11161).
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https://arxiv.org/abs/1710.11161

_Introduction
Concrete results

We consider the O(NN) vector model in three dimensions. In the IR it flows to a
conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed charge:

_ 83/2 ~3/2 172 ~1/2
Ao =520 + 2/ 2Q 0.094+0(Q )



Summary of the results: O(2)
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_Introduction
Scales

We want to write a Wilsonian effective action.
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_Introduction
Scales

® We look at a finite box of typical length R

® The U(1) charge Q fixes a second scale 0'/? ~ Q'/?/R

1/2

1
—R<</\<</o1/2~T<</\UV

— @

For A < p'/? the effective action is weakly coupled and under perturbative control in

powers of o~



_Introduction
Wilsonian action

The Wilsonian action is fundamentally useless because it contains infinite terms.
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Wilsonian action

The Wilsonian action is fundamentally useless because it contains infinite terms.

At best:
® a cute qualitative picture;
® might allow you to get the anomalies right;

® something that helps you organize perturbative calculations, if your system is
already weakly-coupled for some reason;

® maybe a convergent expansion in derivatives.



Wilsonian action

At best:
® a cute qualitative
® might allow yo§ to get

® something that el
already weakly-cdupled for s

our system is
reason;

pansion in derivatives.
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Too good to be true?
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Too good to be true?

Think of Regge trajectories.
The prediction of the theory is

m? < J(14+0(47))

M?, GeV?

but experimentally everything works so
well at small J that String Theory was
invented.




Introduction

The unreasonable effectiveness
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Today'’s talk

The EFT for the O(2) model in 24 1 dimensions
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Today'’s talk

The EFT for the O(2) model in 2+ 1 dimensions

® An effective field theory (EFT) for a CFT.
® The physics at the saddle.
e State/operator correspondence for anomalous dimensions.



B oo
Today'’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

¢ well-defined asymptotic expansion (in the technical sense)
® justify why the expansion works at small charge
® compute the coefficients in the effective action in large-N



B oo
Today'’s talk

The EFT for the O(2) model in 2 4+ 1 dimensions

Justify and prove all my claims from first principles

Use resurgence to reach small charge

® Borel resum the double-scaling Q — co, N — oo limit
® geometric interpretation of non-perturbative effects
¢ general structure of the corrections in the EFT



Introduction
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An EFT for a CFT
USE TIIE'S!MMEI'II
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The O(2) model

The simplest example is the Wilson-Fisher (WF) point of the O(2) model in three
dimensions.

* Non-trivial fixed point of the ¢* action

LUV:au d)*au(b - U(QS*QS)Z

Strongly coupled
® In nature: *He.

Simplest example of spontaneous symmetry breaking.

® Not accessible in perturbation theory. Not accessible in 4 — €. Not accessible in
large N.

Lattice. Bootstrap.



S EREAREIEERI e
Charge fixing

We assume that the O(2) symmetry is not accidental.

We consider a subsector of fixed charge Q.
Generically, the classical solution at fixed charge breaks spontaneously U(1) — @.

We have one Goldstone boson .



~ AnEFTforaCFT
An action for x

Start with two derivatives:

fr
L[x] :?au)(au)(_c3

(x is a Goldstone so it is dimensionless.)
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An action for x

Start with two derivatives:

fr
L[x] :?au)(au?(_c3

(x is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

—2fo _2fc
L[O/X]:fnez auxau)(—e_éfcc3+eT<aanuO—%R)

The fluctuations of x give the Goldstone for the broken U(1), the fluctuations of o give
the (massive) Goldstone for the broken conformal invariance.



S EREAREIEERI e
Linear sigma model

We can put together the two fields as
S=o0+ifrx

and rewrite the action in terms of a complex scalar

We get
o] =0,0*3“0 — ERo* 0 — u(0*0)?

Only depends on dimensionless quantities b = f?f, and u = 3(Cf?)3.
Scale invariance is manifest.
The field ¢ is some complicated function of the original ¢.



Centrifugal barrier

The O(2) symmetry acts as a shifton x.

Fixing the charge is the same as adding a centrifugal term o« — " |

\Y

@
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~ AnEFTforaCFT
Ground state

We can find a fixed-charge solution of the type

x(t,x) = ut o(tx) = 1?log(v) = const,,
where
1
uO<Q1/2+... VO(W

The classical energy is

[E = C3/2VQ3/2 + C1/2RVQ1/2 + 0(071/2)



Fluctuations

The fluctuations over this ground state are described by two modes.
* A universal “conformal Goldstone”. It comes from the breaking of the U(1).

w=——=p

® The massive dilaton. It controls the magnitude of the quantum fluctuations. All
quantum effects are controled by 1/Q.

2
_ 12
w—2u+2u

(This is a heavy fluctuation around the semiclassical state. It has nothing to do with a
light dilaton in the full theory)



S EREAREIEERI e
Non-linear sigma model

Since o is heavy we can integrate it out and write a non-linear sigma model (NLSM) for
x alone.

Llx] = ka/2(9u x 0% x)*/2 + ki /2R(@u x 9% %) 2 + ..

These are the leading terms in the expansion around the classical solution x = ut.
All other terms are suppressed by powers of 1/Q.



State-operator correspondence

The anomalous dimension on IR¥ is the energy in the cylinder frame.
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Protected by conformal invariance: a well-defined quantity.



Conformal dimensions

We know the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal Goldstone.

Es £ (—%|S%) = —0.0937...

1
22

This is the unique contribution of order QP.

Final result: the conformal dimension of the lowest operator of charge Q in the O(2)
model has the form

C _
Ao = 52202 +2v/mer2Q!/% — 0094 + o(a'”?)



T
What happened?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus massless
fluctuations.

The full theory has no small parameters but we can study this sector with a simple EFT.
We are in a strongly coupled regime but we can compute physical observables using
perturbation theory.



Large N vs. Large Charge
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- largeNvs. large Charge
The model

¢* model on R x = for N complex fields
N * u 2
Seloi] = Z/dtdz [g‘“’(au ®)) (ayco,-)—i—rcpfcp,-—l—z(co?‘cpi) ]
i=1

It flows to the WF in the IR limit u — co when ris fine-tuned to R/8.
We compute the partition function at fixed charge

Z(Q1,...,QN) = Tr[eBHﬁ 6(Oi— Q:)]

i=1

Dimensions of operators of fixed charge Q on R? (state/operator):
1
A(Q) = —Elogzsz(Q).



Fix the charge

Explicitly

N

7 /_,ZHZ IHeIGQ,Tr[e—BHHe—vGQ]

i=1 4T i
Since Q depends on the momenta, the integration is not trivial but well understood.

2@=[ e [ D

—F 27r
@ (2 B)=¢€ ¢ (0)

_ [T dé _—iea / Do e5°[0]

— 27r
»(2r B)=0(0)



S EERMGEEEREERD R .,
Fix the charge

Explicitly
0~ 0,0 BH 6,0
i ; — —i
Z/_ﬂ”2 ||e Tr| e ||e

T AU

Since Q depends on the momenta, the integration is not trivial but well understood.

" d0 e ~slo]

Do;e
@ (2 B)=¢€ ¢ (0)

_ [T d8 Ziea / Do e5°[0]

— 27r
»(2r B)=0(0)



Fix the charge

Explicitly

N
i i6,;Q; —BH —i0;Q;
Z= /_n” ||e Tr[e ||e ]

i=1 i=1

Since Q depends on the mome integration is not trivial but well understood.

T de —IGQ

~—S[o]
— 27r i©

Z5(Q) =
@ (2 B)=¢€ ¢ (0)

_ ™ de —IGQ / D(p,‘e

— 27r
»(2r B)=0(0)

-5%o]



~ LlargeNvs. Large Charge
Effective actions

The covariant derivative approach:
N R
S%le] = Z/dtdz ((Ducp;)*(D“cpf) - gco7‘c0;+ZU(cp§‘<pi)2>
i=1

where
Doo =@ + 50
Dip = d;0
Stratonovich transformation: introduce Lagrange multiplier A and rewrite the action as
N

SaE=hy [—ie;Q;Jr/dtdZ [(D;cpi)*(D;cp;) + (g + /1) 070

i=1

Expand around the VEV

1 R A
(Di:ﬁAi‘FUi’ A=<u2——)+)t



o targeNvws.largeCharge
Saddle point equations

The integral over the ¢ is Gaussian.
We can perform it, e.g. in terms of zeta functions.

Z(s|z, u) = Tr<(v2z _ u2)—s)

With some massaging, we find the final equations

FY(Q) = uQ+NZ(—3|Z, u),
w3z, u)=-%8

The control parameter is actually Q/N.



- largeNvs. large Charge
Large Q/N

If Q/N > 1 we can use Weyl's asymptotic expansion.
Tr(e®=f) = ) Kyt/27.
n=0

The zeta function is written in terms of the geometry of = (heat kernel coefficients)

47 /fQ\"? R [v /Q\?
s = T(m) +ﬂ E(T\I) “+ ...

Fy _2 [Am(Q\** R [V QN
2N 3 V \ 2N 12V 47 \ 2N
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- largeNvs. large Charge
Order N

AN/ Q\*? N/ a2

IN/Q\ 2 7TIN Q) TN
_IN(QNTT_T7IN(Q ~\/3/@N)
360 (21\1) 90720 (2/\/) +0(e )



Order N

AN/ Q\*? N/ a2

IN/Q\ 2 7TIN Q) TN
_IN(QNTT_T7IN(Q ~\/3/@N)
360 (21\1) 90720 (2/\/) +0(e )
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Order N

AN/ Q\*? N/ a\"?

IN/Q\ 2 7TIN Q) TN
_IN(QNTT_T7IN(Q ~\/3/@N)
360 (21\1) 90720 (2/\/) +0(e )



Order N

-
Ja

TR

@2,

@,

1 2 4 5 6

AN/ Q\¥?2 N/ Q)\'?
Fo(Q) = —( == (=
S 3 \2N 3\ 2N

IN/Q\ 2 7TIN Q) TN
_IN(QNTT_T7IN(Q ~\/3/@N)
360 (21\1) 90720 (2/\/) +0(e )



Where is the universal Goldstone?

'
~ the fields we

i

start.with
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~ LlargeNvs. Large Charge
Was it worth it?

Millions of troops
are on the move..
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~ LlargeNvs. Large Charge
Final result

A(Q) = (%’Jrom)) (%)3/2+ (%’+0(1)> (%)1/Z+...
—0.0937...

» would you like to know more?
Domenico Orlando | The O(N) vector model at large charge: EFT, large N and resurgence.



Final result

C3/f2

0.7
061
0.5F
0.4r
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0.2F
0.1F
0.0F

4N Q\*¥? (N Q\ 72
A(Q)—(T+O(1))(m> +(§+O(1)>(m) +...
—0.0937....
04l
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2 © 02}
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Resurgence and the large charge
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ISSIEENEREIE SRIEREREIERER e ————————————
Results from large N

O(2N) at criticality in 1 4+ 2 dimensions on R x 3. Double-scaling limit N — c0, Q — o0
with § = Q/(2N) fixed.
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_ Resurgence and the large charge .
Results from large N
O(2N) at criticality in 1 4+ 2 dimensions on R x 3. Double-scaling limit N — c0, Q — o0

with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is

f6) = sup(ug—w(n)), &= . w(u) = —22(=}1Z,u),
u du 2



S LETEEEEROLERELFDE Y,
Results from large N

O(2N) at criticality in 1 4+ 2 dimensions on R x 3. Double-scaling limit N — c0, Q — o0
with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is

(@) =swp(ua-w(),  a="3 () =—5e(-Hz )

Z(s|Z, u) is the zeta function for the operator —A + 2. In Mellin representation

C(s|Z, u) = %/Ooo thtSe—uthr<eAt).



S LETEEEEROLERELFDE Y,
Results from large N

O(2N) at criticality in 1 4+ 2 dimensions on R x 3. Double-scaling limit N — c0, Q — o0
with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is
A A . dw(u 1
(@) =sup(ua—w(w),  a="2L) )= —Tr(-4izw),

M

Z(s|Z, u) is the zeta function for the operator —A + 2. In Mellin representation

C(s|Z, u) = %/Ooo thtSe—uthr(eAt).

Large §is large 1 and is small t. The classical Seeley—de Witt problem:
% R
At
Tr () —47”(1 it )



_ Resurgence and the large charge .
The torus

As a warm-up: = = T2.

spec(A) = {——<k2 + kz) |k1, ko € Z}.
It follows that the heat kernel trace is the square of a theta function:
_an2 (22t _ane ]2
Tr(em = ) e v (+ig)t — {63(O,e L2 )] :
/(1,I<2€Z

We are interested in the small-t limit. For this reason we Poisson-resum the series: We
can use Poisson resummation

Zh E/ p)ekade

nezZ keZ

) [t g )] g )




_ Resurgence and the large charge .
The torus

Grand potential

B 1 A B L2U3 , e—HkHuL 1
wlu) = 2C< 2T 1) = 12n 1+Zk: Ik|[% w22 1—i_HkHuL '

Free energy

e | oKV
f(§) = su ug—w(u :—A3/2 1— _—+ ... ].
(&) = sup(ug—w(uw) = =4 L skPrg

® perturbative expansion in u (here a single term) plus exponentially suppressed
terms controlled by the dimensionless parameter uL

e the free energy is written as a double expansion in the two parameters 1/§ and

e—\/47zéy.

* non-perturbative effects more important than the “usual” instantons O (e 9)



- Resurgenceandthe large charge
The sphere

On the two sphere spec(A) = {—£(¢ + 1) | £ € No} with multiplicity 2¢ + 1.

again, we use Poisson resummation

Eh 2/ p)ekade

neZ keZ

to rewrite the heat kernel in terms of the imaginary error function

2km

Tr(eAt)em¥% = Y (20 +1)e (1727 +2Z (1) % = 575 F(3%)
>0 kez
where
F(z) = e_zz/ dte ' = @e_zz erfi(z)
0



- Resurgenceandthe large charge
Sphere: asymptotic expansion

For small t
® (2n+ )0/
F(z) ~ nX::O on+ B
and
1 o (  1\n+1 _91-2n
Te e(A—Z)t ~ 1 Z ( 1) (1 2 )antn
t = n!

The series is asymptotic: the Seeley—-de Witt coefficients diverge like n!:

(_1)n+1(1 _21—2n) 2n1/2

pr— Y '
an nl 2n ™ 5742

this divergence is reflected in the existence of non-perturbative corrections.
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Resurgence

The key idea is that we should think in terms of transseries

Ht) =t Y aQv + ¥ Ce A/t Y a0,

n>0 k>1 n>0
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S LETEEEEROLERELFDE Y,
Resurgence

The key idea is that we should think in terms of transseries

Ht) =t Y aQv + ¥ Ce A/t Y a0,

n>0 k>1 n>0

The coefficients of the non-perturbative part are encoded in the large-n behavior of the
perturbative piece:

. k
gzn,An/mbk( <())I'(Bn+bk)+ag )Akr(3n+bk—1)+..,>



S LETEEEEROLERELFDE Y,
Resurgence

In our case, the a, are
& F(n+1)
—4 Sk 27
an \/E,;( ) (71'/()2”

Comparing the two expressions we find that for the trace of the heat kernel:

C
A= (mk)?, Z—Y:iaék) = 4(—)kkm3/2, ag% =0.

The series around each exponential are truncated to only one term and the
non-perturbative correction to the heat kernel is

3/2. 2
4i(5)" L) ke

k=1



Borel resummation




Borel transform

We need to make sense of the divergent series and the imaginary terms.

S(H)(t) = /O " wbeHi(twh

dw
)W

Domenico Orlando



_ Resurgence and the large charge .
Lateral transform

If there are poles on the real positive axis there is an ambiguity

Lz

A&
I RN 2\ 22

s (MO =s(H)(© = [ W Fi(tw?)

s+(H) —s_(H) = (2mi) ;residue

We need an independent definition of the non-perturbative effects to cancel the
imaginary ambiguity.



_ Resurgence and the large charge .
Borel transform for the heat kernel on 52

__91-2n
TI'( (A=1/(4 ) Z an (1n' 2 ) _ E ant”

n>O : n>0

In the previous notation, 8 =1, b =3/2.
The Borel transform can be summed in terms of elementary functions

1 an 1
H(z) = ?‘gmr” - VvV Tsin(y/7)
and if we Laplace transform [Perrin, 1928]
2 o0 A
SO ==z |, )
there are simple poles fory = km, k=1,2,.... The residues are

Y/t 3/2 242
(2mi) Res(\/_@/2 sem( )’ kn) = (- )k+14;]k|( ) e t .




More ingredients

-
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- Resurgenceandthe large charge
Worldline interpretation

We need a non-perturbative interpretation of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse temperature t
and Hamiltonian H = — 3% — A, i.e. a free quantum particle moving on R x =.

We can write the partition function as a path integral

Tr(e(ag+A)t> =N / DX e—SX
X(1)=X(0)

where the action is the square of the length of the path

S = - [ 47 gun X (2)X* (1) = 1PX)



S LETEEEEROLERELFDE Y,
A transseries from geodesics

In the limit t — O the path integral localizes on a sum over all the closed geodesics r.

For each geodesic a perturbative series in t, weighted by e~ U(r)?/ (4
Tr(e(a%+A)t> =N / DX e ¥
X(1)=X(0)
«

) 2 )
)
=t bo ) a4 ) ' e @ tbr ) al"
n=0 n=0

r € closed geodesics

the b, depend on the geometry.
This is precisely the same structure predicted by resurgence.

Now we have a geometric interpretation.



~ Resurgence and the large charge
The torus

In the case of the torus, closed geodesics are labelled by two integers (kq, k»)

The length of the geodesic is £(ky, ky) = Ly/k + k3.

The integral is quadratic and the fluctuations around each geodesic give the usual

1
N / Dh et JodT (B)2+(H)? Ndet(i ) = 4%”
h(1)=h(0)=0



_ Resurgence and the large charge .
The torus

Now we can write the result of the path integral
T(e2) =N [ DxeW-n2y [ eSS
X(1)=X(0) Xl h(1)=h(0)=0
=N Y o / Dhe™l,

kez? h(1)=h(0)=0

;P2
T+ ) e = ]
kez?

L2
~ 4nt

This is exactly what we had found before just by looking at the spectrum.
Now we can understand the non-perturbative effects in terms of closed geodesics.



- Resurgenceandthelarge charge
The sphere

Closed geodesics on the sphere go around the equator k times

Domenico Orlando | The O(N) vector model at large charge: EFT, large N and resurgence.



- Resurgenceandthelarge charge
The sphere

Closed geodesics on the sphere go around the equator k times

There is a zero mode because we can rotate the equator

Domenico Orlando | The O(N) vector model at large charge: EFT, large N and resurgence.



The sphere

Closed geodesics on the sphere go around the equator k times

There is a zero mode because we can rotate the equator

And an instability because we can slide off

Domenico Orlando | The O(N) vector model at large charge: EFT, large N and resurgence.



- Resurgenceandthe large charge
The sphere path integral

At leading order we can just pick a coordinate system and expand the action
L= 6%+sin?(0)>
around the geodesic

625 ¢(7)=2mkt

so that the fluctuations give a massless and a massive mode

n 1 . .
Tr(em> =) e_(zétrk)2 /Dhe Dhy exp [—4lt/() dt (h% + h — (an)zhze)]

kez




- Resurgenceandthelarge charge
The sphere path integral

The hg fluctuation is massless and gives

/Dh¢exp{ /dT ¢] W
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- Resurgenceandthe large charge
The sphere path integral

The hg fluctuation is massless and gives

/Dh¢exp{ /d'r 4 W

For hy we need to work a bit more. Decompose in modes:

he = V2sin(mnt) An:%2<n2—4l<2>

® azero mode for n = 2k
® 2n — 1 unstable modes
Once we regularize the determinant we get

1 1 ¥ A2 . . T k
/Dhg exp[—zt/() dT (he —(27[’() h9>:| = ilﬁ?



- Resurgenceandthe large charge
The sphere path integral

The hg fluctuation is massless and gives

/Dh¢exp{ /d'r 4 W

For hy we need to work a bit more. Decompose in modes:

2
he = V2sin(mnt) An:7<n2—4l<2>

® 3zero mode for n = 2k

® 2n — 1 unstable modes

Once we regularize the determinant we get

1 .
/Dhgexp[—%t/o dr (I —(27rk)2h29>] y \"f';

And putting it all together the non-trivial geodesics give

+2i( = ) Y ke~

keZ




S LETEEEEROLERELFDE Y,
Back to resurgence

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

Tr(e<A—%>t) = s, (H)(D) F 2,'(%)3/2 Y (—1)kke™F = Re[ss(H) (1))

k>1

And from here we can write the exact expression for the grand potential
(m? = w?+1/4):

2rm? /0°°d K2(2mry)] :§m3 m 2irt/2m?3/2 “2mmm

o(u) =Re [T [ oy 52T " e



Back to resurgence

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

3/2 22

Y (—1)'ke™ T = Re[s:(H)(1)]

k>1

Tr(e@—%)f) = s, (H)(D) F 2,'(%)

And from here we can write the exact expression for the grand potential
(m? = w?+1/4):

—27rrm+.“

2 roo 3 )23 2
w(i) = Re [Zrm / q K2(2mry)] _ §m3 m 2ir'’<m
0

: yem() “@ T T e

As a numerical test, we can compare with the convergent small-charge expansion
(g =~ 0.6)

rw(mr=0.4) = 0.012777 296 63.....

small charge

rw(mr=0.4) = 0.012777 297 69 . ..

resurgence




Optimal truncation
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S LETEEEEROLERELFDE Y,
Lessons from large N

Let's go back to the EFT.

The effective action is identified with the asymptotic expansion: the expression we
found for the grand potential is the value of the action at the minimum x = ut:

w(u) = LgFr

X=ut

where
LepT = wo(@u x 3% 2)*? + w1(@ux 3 )" + ..,
In general the coefficients are unknown

BUT

Now we have a geometric understanding of the non-perturbative effects



S LETEEEEROLERELFDE Y,
Lessons from large N

Assume:
1. the large-charge expansion is asymptotic;

2. the leading pole in the Borel plane is a particle of mass 1 going around the
equator.

A CFT has no intrinsic scales.
The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transseries

A(Q =02 Y ﬁf’)%

n>0 n>0

L CQrie VA Yy fgp& L

(we used = 3fv/Q/2+...)



Lessons from large N

® The controlling parameter for the non-perturbative effects e=37HVQ s fixed by the
leading term in the 1/Q expansion.

. b g 0) ’ .
¢ The non-perturbative coefficient e37% VO fixes the large-n behavior of the
perturbative series f,(qo).

£9 (2n)!(3m féo))*”

We don't know enough for a Borel resummation, but we can estimate an optimal
trucation (the value of n where f<n0) Q" is minimal)

corresponding to an error of order € (Q) = (’)(e*3"f0‘/5>



_ Resurgence and the large charge .
Can we understand the lattice results now?

In O(2), 3~ 0.301(3), so N* = (’)(\/6) and € (Q) = (’)(e_’”@)

MC dafta —a— |
it

2 4 6 8 10
Q
This fit was obtaind with N = 3 terms.
For Q = 1 we get an error ~ 6 x 1072 and for Q = 11 the erroris ~ 5 x 107>

(Comparedto e™™ ~ 4 x 1072 and e V1T — 3« 1079).




- Resurgenceandthe large charge
What has happened?

The large-charge expansion of the Wilson-Fisher point is asymptotic

In the double-scaling limit Q — oo, N — co we control the perturbative expansion

® We can Borel-resum the expansion

We have a geometric interpretation for the non-perturbative effects
® We can use this geometric interpretation also in the finite-N case

We obtain an optimal truncation and estimate of the error

The results are consistent with lattice simulations
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Conclusions

¢ With the large-charge approach we can study strongly-coupled systems
perturbatively.

® Select a sector and we write a controllable effective theory.

¢ The strongly-coupled physics is (for the most part) subsumed in a semiclassical
state.

® Qual(nt)itative control of the non-pertubative effects.

e Compute the CFT data.

® Very good agreement with lattice (supersymmetry, large N).
® Precise and testable predictions.



	Introduction
	Introduction

	The effective theory
	An EFT for a CFT

	Large N vs. Large Charge
	Large N vs. Large Charge

	Resurgence
	Resurgence and the large charge

	Conclusions
	Conclusions


